next up previous
Next: Velocity flow field in Up: Waves in "Infinite" Depth Previous: Waves in "Infinite" Depth

Velocity potential and dispersion relation

It can be shown that the velocity potential can be put in the form:

equation42

with tex2html_wrap_inline1329 and A being constants to be determined.

tex2html_wrap_inline1331 tex2html_wrap_inline1333 must satisfy Laplace equation

eqnarray45

tex2html_wrap_inline1335 is excluded because tex2html_wrap_inline1337 would grow exponentially with tex2html_wrap_inline1339 ,   tex2html_wrap_inline1341 corresponds to a non-physical solution.

tex2html_wrap_inline1331 tex2html_wrap_inline1333 must satisfy the kinematic b.c. on the free surface:

eqnarray52

eqnarray60

eqnarray67

eqnarray71

eqnarray77

Deep Water

tex2html_wrap_inline1331 Dynamic b.c. must also be satisfied on the free surface: ( tex2html_wrap_inline1349 )

eqnarray86

  eqnarray94

eqnarray105

eqnarray118

eqnarray120

eqnarray131

eqnarray142

eqnarray150

So eqn.(14) becomes:

eqnarray153

tex2html_wrap_inline1351 is second order (linear wave theory)

  eqnarray161

Eqn. (23) is called the dispersion relationship (Deep Water)

eqnarray172

Deep Water

so as L tex2html_wrap_inline1353   or   T tex2html_wrap_inline1353     tex2html_wrap_inline1357     C tex2html_wrap_inline1353

tex2html_wrap_inline1331 From the three quantities C,L,T, only one can be given. The other two can be expressed in terms of the given quantity.



Soon Woong Chang
Wed Oct 27 12:41:46 CDT 1999