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Ship-shaped hulls have often been found to be subject to excessive roll motions, 

which can inhibit their use as a stable production platform. To solve the problem, bilge 

keels have been widely adopted as an effective and economic way to mitigate roll 

motions, and their effectiveness lies in their ability to damp out roll motions over a range 

of frequencies. In light of this, the present research focuses on roll motions of ship-

shaped hulls. A finite volume method based two-dimensional Navier-Stokes solver is 

developed and further extended into three dimensions. The present numerical scheme is 

implemented for modeling the flow around ship-shaped hulls in prescribed roll motion 

and for predicting the corresponding hydrodynamic loads. Studies on the hydrodynamic 

performance of ship-shaped hull in transient roll decay motions are also conducted. 

Systematic studies of grid resolution, the effects of free surface, hull geometries and 

amplitude of roll angle on the results are performed. Predictions from the present method 

compare well to those of other methods, as well as to measurements from experiments. 

Non-linear effects, due to the effect of viscosity, were observed in small as well as in 
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large roll amplitudes, particularly in the cases of hulls with sharp corners. The results of 

the present method also suggest that it is inadequate to use a linear combination of added-

mass and damping coefficients to represent the corresponding hydrodynamic loads. As a 

result, the calculation of the hull response is performed in the time domain. Finally, the 

capability of the present numerical scheme to apply in fully three-dimensional ship 

motion simulations is demonstrated. 
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Chapter 1: Introduction 

1.1 BACKGROUND 

Oil has been drilled from offshore locations since the 1950s when all oil platforms 

originally sat on the seabed. The rising demand of oil has pushed the exploration of oil to 

move to deeper waters and longer distances offshore. However, due to the water depth 

and the prevailing harsh weather conditions, it is an expensive and challenging task to 

setup the drilling and production system in deep seas.  

Since the usage of a fixed platform is limited in shallow water, the offshore oil 

and gas industry has been using floating production systems since the mid-1970s. 

Floating, Production, Storage and Offloading (FPSO) drilling vessels, often converted 

from tankers, are a typical type of floating production system, used for the extraction of 

oil in deep seas. FPSOs can be taken offsite when in the projected path of a hurricane. 

From the environmental as well as the economic standpoints, FPSOs are also very cost 

effective due to the fact that they can be re-used elsewhere when the oil field's productive 

life ends. This is a fact especially attractive for marginal oil fields, where the production 

facilities are mostly needed for only a few years. Figure 1.1 presents a floating oil drilling 

system, which involves an FPSO and other drilling platforms, and Fig. 1.2 shows an 

operating FPSO hull situated off the coast of northern Angola (Kizomba B FPSO has a 

storage capacity of 2.2 million barrels, and is 285m long, 63m wide, and 32m high). 

 



2 

 

Figure 1.1: A typical FPSO connected to other drilling platforms (source: 
upload.wikimedia.org/wikipedia/commons/8/80/FPSO_diagram.PNG). 

 

Figure 1.2: Kizomba B FPSO (source: http://www.toolpusher.co.uk/jh1%20033.jpg). 
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1.2 MOTIVATION 

FPSO hulls have often been found to be subject to excessive roll motions that 

inhibit their use as a stable production platform. Most commonly considered systems and 

methods of roll reduction can be divided into the following two groups: 

• Active stability system: Active stabilizer fins. 

• Passive systems, such as anti-roll tanks and bilge keels. 

 

According to Kasten (2002), active stabilizer fins can provide up to a 90% roll reduction, 

depending on the ship speed. They are most effective at maximum ship speed, and 

marginally effective with zero ship speed. As a result, the active stabilizer fins are not 

considered as an option for stationary vessel such as FPSOs. They are also relatively 

expensive and complex to install. For passive roll reduction systems, ship speed is not a 

limiting factor. Using passive anti-roll tanks, the roll reduction can be on the order of 

50% to 60%. The main disadvantage, however, is the added displacement required to 

carry the extra deadweight of the tank contents. Passive anti-roll tanks are also relatively 

complex to design correctly. Using bilge keels, another passive roll-reduction approach, 

can provide roll attenuations on the order of 35% to 55%. Compared to anti-roll tanks, 

bilge keels may cause some added frictional resistance due to increased wetted surface 

area. However, they are relatively inexpensive and simple to install. As shown in 

Fig.1.31, a bilge keel is a long fin of metal, often in a "V" shape, and attached along the 

length of the vessel, which runs over the mid-ship portion of the hull to the turn of the 

bilge. Bilge keels increase the hydrodynamic resistance when a hull rolls, and thus reduce 

the tendency of a hull to roll when it is subject to waves. Bilge keels have been widely 

                                                
1 Note that Fig. 1.3 shows a mid-ship hull section of a ferry, which is much smaller than an FPSO hull. 
The mid-ship portion of an FPSO hull and the corresponding bilge keel length in the hull longitudinal 
direction will be longer than what is shown in Fig. 1.3. 
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used as an effective and economic way to mitigate roll motions, and their effectiveness 

lies in their capability to damp out roll motions over a range of frequencies. It is essential 

to simulate the separated flow around the bilge keels under a large angle of roll motions 

and to predict the corresponding hydrodynamic loads correctly. 

 

 

Figure 1.3: Mid-ship hull section showing bilge keels (source: 
http://k43.pbase.com/v3/45/387545/1/50702675.DSC_3086z.jpg) 

 

Empirical and semi-empirical formulae, based on experimental data, have been 

used in the past for estimating the roll damping moment. The decay and prescribed roll 

tests are two types of experiments which are often performed on hull models. Therefore, 

most existing studies focus on these areas. In the past, the thee-dimensional problems of a 

hull subject to roll motions are often approximated by two-dimensional approaches using 

strip theory. These approaches are basically two-dimensional solutions at each cross-
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section integrated along the ship’s length. Strip theory has been used widely because it 

reduces computational effort. Strip-theory predictions, however, are poor at high wave 

frequencies (or high Froude numbers, equivalently), and/or for hulls with large beam to 

length ratio. A fully three-dimensional solver is, therefore, needed to accurately predict 

the wave-hull interaction. 

The numerical modeling untill now has been limited because of insufficient 

computational resources. Most of the past numerical schemes were based on potential 

(inviscid) methods. More recently, the use of viscous solvers, e.g. Reynolds Averaged 

Navier-Stokes (RANS) solver, for the prediction of hull motions has become more 

common, despite the fact that these methods often requite very large number of nodes (or 

cells), especially in the case of three dimensions. With rapidly increasing computer 

capacity2, full-scale application of numerical tools on hull motion problems is now more 

feasible. 

 

1.3 OBJECTIVES 

The objective of the research is to develop a robust and reliable computational 

tool to predict hull motions and the resulting hydrodynamic loads, with emphasis on roll. 

More precisely, the research aims to perform systematic studies on grid dependence of 

the results of the developed methods, and to investigate the effects of hull geometries and 

the presence of the bilge keels on the reduction of hull motions. 

A two-dimensional numerical scheme for solving the unsteady Euler equations in 

the context of propulsor flows was developed by the Ocean Engineering Group in the 

University of Texas at Austin (Choi 2000; Choi and Kinnas 2001; 2003). Later, the 

                                                
2 The rapidly increasing computer capacity is primarily achieved by higher CPU speed and by using 
parallel computation, which allows larger number of cells and reduces running time. 
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numerical scheme has been modified to include the effect of viscosity and was named 

NS2D. It was applied to simulate hull motions and to predict corresponding 

hydrodynamic loads in Kakar (2002) and Kacham (2004) with simplified hull geometries 

and assumptions. In this study, the two-dimensional numerical scheme is further 

improved, and applied to problems with more complex hull geometries. Some 

preliminary studies were presented in Kinnas et al. (2003) ;Yu et al. (2005); Kinnas et al. 

(2006; 2007); and Yu and Kinnas (2008). The solver is later extended into three 

dimensions, which will be mentioned as NS3D hereafter. 

 

1.4 OVERVIEW 

This dissertation is organized into seven chapters: 

Chapter 1 includes the background, motivation, and the objectives of the research. 

Chapter 2 presents the literature review of related studies on the prediction of hull 

motions and a review of the numerical methods related to the present numerical scheme.  

Chapter 3 describes the methodology used in the study, which includes the 

governing equations, the numerical formulations, the boundary conditions, and the hull 

geometries. 

Chapter 4 presents two types of simplified two-dimensional simulations for the 

verification and validation purposes of the present numerical scheme. In the first type of 

simulation, the study is performed in the case of a submerged body, and the other type of 

simulation is conducted on a wave-maker problem. 

Chapter 5 presents the simulations of two-dimensional ship-shaped hulls subject 

to prescribed roll motion (section 5.1) or in free-decay motions (section 5.2). Section 5.1 

presents the grid sensitivity analyses in space and in time, and the comparisons of the 
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results from NS2D and those from other methods. Also presented are the studies of the 

effects of free surface, hull geometries, and roll angle amplitudes. Section 5.2 addresses 

the effects of hull geometries and initial roll displacements on mitigating roll motions. 

Chapter 6 shows the simulations of three test cases for the verification and 

validation purposes of the three-dimensional Navier-stokes solver (NS3D): a piston type 

wave-maker problem and the prescribed roll motion problems for a uniform or a non-

uniform cross-section hull. 

Chapter 7 summarizes the conclusions and the contributions of the study, and 

provides recommendations for future research. 
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Chapter 2: Literature Review 

This chapter reviews the existing literature related to ship-shaped hull roll motion 

problems. The first section focuses on the prediction of hull motions, particularly in roll. 

The second section discusses numerical methods related to the present numerical scheme.  

 

2.1 PREDICTION OF SHIP MOTIONS 

An accurate assessment of wave-body interaction is of crucial importance to 

ocean engineering and ship design industry. The corresponding experimental and 

numerical methods have been developed and investigated over past years. The first 

subsection will review the existing experimental studies, and the second subsection will 

review the existing numerical methods. 

 

2.1.1 Experimental Studies 

For two-dimensional wave-body interactions, Vugts (1968) made a great 

contribution in investigating independent roll, heave and sway motions for various hull 

geometries. He was the first to calculate the hydrodynamic coefficients for sharply edged 

sections in roll motions and to observe the importance of the viscous effect. The results 

have been used as a guideline for ship design.  

Sarpkaya and Okeefe (1996) presented the experimental measurements of two- 

and three-dimensional vertical plates subject to an oscillating inflow. The vertical plate 

was a simplified geometry, which can be viewed as a slender bilge keel placed on a flat 

wall without the presence of the free surface. They concluded that bilge keels did provide 

a high degree of damping, which was affected by the vortex shedding from the edge of 
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the plate. Therefore, the use of the damping coefficients obtained from free-plate tests is 

not necessarily applicable to wall-bounded cases. 

Yeung et al. (1998) conducted an experimental study on the prescribed roll 

motion for a rectangular ship-like section, and compared the hydrodynamic coefficients 

obtained from their experiments to those from FSRVM, where the acronym FSRVM 

stands for the Free-Surface Random Vortex Method, developed by Yeung et al. (1993). 

Note that the round bilge hull geometry that they used has a different bilge radius (2% of 

the beam), as compared to the one (3.125% of the beam) used in Vugts (1968). This 

difference results in a deviation on the prediction of the corresponding hydrodynamic 

coefficients. The results of Yeung et al. (1998) also showed that the added-mass 

coefficient is not affected for roll amplitudes less then 5.75 degrees.  

Following their research in 1998, Yeung et al. (2000) performed a study in which 

each side of the hull was attached with a bilge keel and the assumption of uniform cross 

hull section was made. They compared the results from the experimental measurements 

to those from FSRVM and BFFDM, where the acronym BFFDM stands for the 

Boundary-Fitted Finite-Difference Method based numerical solver (Alessandrini and 

Delhommeau 1994). A study on the effect of the bilge keel length was performed. The 

results showed that an increase in the keel size enlarges both the added-mass and 

damping coefficients.  

Na et al. (2002) presented some experimental data for an FPSO hull with vertical 

and horizontal bilge keels subject to roll motions. Another study presented by Seah and 

Yeung (2003) investigated the same problem by using FSRVM. Both of their studies 

concluded that the horizontal bilge keels generate vortices closer to the free surface, and 

thus carry more energy away from the body, and result in a higher damping coefficient. 
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Yuck et al. (2003) performed a series experimental studies and partial numerical 

calculations for analyzing the roll motion of non-conventional mid-ship sections. The 

damping coefficients for various hull models, a round bilge model, a box (square) model 

and a step model, were estimated. The researchers divided the roll damping into the 

wave-making component and the viscous component. The viscous component was 

predicted by simulating a submerged hull problem, where the free surface was absent. 

The wave component was determined experimentally by a far-field momentum method. 

Their results were compared to the numerical results obtained from the potential theory 

and the experimental results from Vugts (1968), which have shown great agreement. 

Unfortunately, the authors did not provide any experimental data on the roll added-mass 

calculation. 

Irvine et al. (2006) presented a series of studies on the free roll decay motion of 

an advancing surface combatant in calm water. The results of three model tests from 

three different international facilities were compared, and their comparisons show 

significant differences in roll decay and period among the facilities. Their study also 

shows a difficulty in simulating the ship roll motion problems. Irvine et al. (2008) also 

presented another study on the towing-tank experiments of coupled pitch and heave 

motions for a surface combatant in regular head waves. An equation was derived to 

predict the Froude number for maximum response as a function of ship geometrical 

coefficients. 

 

2.1.2 Numerical Studies 

Traditionally, naval architecture sub-disciplines are separated for resistance and 

propulsion, maneuvering, and seakeeping. Of the three sub-discipline areas, the 
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application of viscous methods to resistance and propulsion problems has been studied 

for more then two decades. At the recent Gothenburg 2000 Workshop on CFD in Ship 

Hydrodynamics3, the results have shown that the existing methods are able to predict ship 

resistance with reasonable accuracy. Tahara et al. (2000) applied the RANS method to 

optimize hull forms for a variety of objective functions for ships with steady forward 

speed in calm sea.  

On the contrary, the application of viscous methods for maneuvering and 

seakeeping is more complicated due to the interactions among unsteady flows, ship 

motions and complex environments (e.g., incident waves and wave breaking), and such 

simulation also requires large computational power. For steady ship maneuvering, Tahara 

et al. (1992) applied an interactive approach for calculating ship boundary layers and 

wakes for nonzero Froude number. In Tahara and Stern’s (1996) study, a large-domain 

approach was developed for the same problem. In their approach, the RANS and 

continuity equations were solved with the Baldwin-Lomax turbulence model with exact 

nonlinear kinematic and approximate dynamic free-surface boundary conditions, and a 

body/free-surface conforming grid. More studies with the application of viscous methods 

can be found in Alessandrini and Delhommeau (1998); Tahara et al. (1998); Di Mascio 

and Campana (1999); Hochbaum and Vogt (2002); Simonsen and Stern (2003) and 

Simonsen and Stern (2005). In Simonsen and Stren’s (2005) study, a simplified potential 

theory-based infinite-bladed propeller model was coupled with the RANs solver to give a 

model that interactively determines propeller-hull-rudder interaction without requiring 

detailed modeling of the propeller geometry. For unsteady ship maneuvering, however, 

                                                
3 A workshop on Numerical Ship Hydrodynamics, Chalmers University of Technology, Gothenburg, Sweden; September 2000. 
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most studies are conducted based on motion simulation programs with empirically 

derived coefficients. 

For seakeeping, early studies were based on the assumptions of small amplitude 

motions and potential theory. Later, Sen (2002) presented the time domain computation 

of large amplitude ship motion using a potential flow based solver. In the study, both 

linear and non-linear (large amplitude) computations were included, and the non-

linearities had a considerable influence on the results. The potential flow solvers, 

however, have been proven adequate for sway, pitch and heave motions, in which the 

viscous effect is insignificant. In the case of roll, however, these solvers fail due to the 

assumption of irrotational flow and the absence of viscous effects. Himeno (1981); Taz 

Ul Mulk and Falzarano (1994) included the viscous effects in the potential flow based 

models by incorporating empirically derived roll damping data. However, the simulations 

are limited to the ship geometry, the frequency of ship motion, and operating parameters 

from the empirical data. Therefore, the development of viscous methods and the 

prediction of large amplitude of motions are critical needed for ship design. 

For the application of viscous methods to seakeeping problems, most studies 

focuses on 2D oscillating bodies, and the effects of viscosity are clearly observed 

(Korpus and Falzarano 1997; Sarkar and Vassalos 2001; Seah and Yeung 2003; Yeung et 

al. 1998; Yeung et al. 2000). In Korpus and Falzarano’s (1997) study, a fully submerged 

hull without bilge keels was investigated using a RANS method. They performed a series 

of parametric studies in order to identify the individual contributions of viscosity, 

vorticity, and pressure. They have found that both the magnitude and phase of roll 

moment were strongly affected by rotational flow contributions to pressure (i.e., shed 

vortices near the bilge). They also concluded that in the case where the bilge keels are 

present, one must account for the nonlinear effects at the third and fifth harmonic of the 
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forcing frequency, which implies that it is not sufficient to use only the added-mass and 

damping coefficients to represent the moment and forces on the hull. Sarkar and Vassalos 

(2001) used a Reynolds Averaged Navier-Stokes (RANS) solver, "COMET", to simulate 

the flow in the case of a rectangular cylinder rolling at the free surface, where the 

Volume Of Fluid (VOF) method was applied to predict the free surface. In their study, a 

series of investigations on the square and round bilge hulls for varying roll frequency 

have been performed with different roll angle amplitudes. However, the bilge radius that 

they used for a round bilge hull was 0.625% of the beam, rather than 2% (Yeung et al. 

1998) or 3% (Vugts 1968) of the beam. According to Sarkar and Vassalos (2001), the 

results are sensitive to the hull geometries as well as to the bilge radius. Their results 

show that the characteristics of the physical flow can be simulated qualitatively, but the 

resulting hydrodynamic coefficients are inconsistent with those from Vugts (1968) and 

Yeung et al. (1998). 

For 3D investigations, Miller et al. (2002) performed a study on the prediction of 

forces and moment on a 3D submerged cylinder fitted with bilge keels subject to 

prescribed roll motions. Moreover, Prediction of pitch and heave motions for ships with 

regular head waves was conducted for a container ship in Hochbaum and Vogt (2002), 

where the level-set algorithm was applied to predict the free surface. For Wigley hull and 

Series 60 cargo ships, prediction of pitch and heave motions for ships was performed in 

Sato et al. (2000) using density function free surface modeling. In addition, Wilson et al. 

(1998) performed simulations for Wigley hull, Series 60 cargo ships and DTMB model 

5512 for medium speed/long wave and high speed/short wave conditions, and validated 

their RANS solver. Following the same research, Weymouth et al. (2005) presented a 

study on pitch and heave motions for the Wigley hull in incident waves, and the RANS 

results were compared to those from strip theory. Later, Wilson et al. (2006) extended 
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their previous work to unsteady RANS simulations of general 6DOF ship motions and 

maneuvering, and analyzed the prescribed roll motion for a ship-shaped hull. A spring–

mass-damper system was used to compare their non-linear predictions to the traditional 

linear strip theory results. The natural rolling frequency and the roll decay rate at multiple 

ship speeds both with and without bilge keels were predicted. Their study highlighted the 

viability and the importance of the numerical simulation for fully three-dimensional ship 

motion problems. 

 

2.2 NUMERICAL METHODS 

The early investigations of three-dimensional wave-body interaction were based 

on the two-dimensional theory. A number of two-dimensional strip-theory based methods 

for the slender body have been subsequently developed by various researchers. The 

pioneering work was proposed by Korvin-Kroukovsky (1955).  

Based on the potential theory, the Laplace equation has been widely used for 

modeling wave propagation. For the prediction of large amplitude wave motion, various 

approaches have been pursued and categorized as fully non-linear methods. The fully 

non-linear free surface calculation following the Mixed Euler-Lagrangian approach was 

proposed by Longuet-Higgins and Cokelet (1976) in a two-dimensional flow. It is based 

on the Boundary Element Method (BEM), and the approach has been widely used by 

many researchers. Vinayan et al. (2005) also implemented the Mixed Euler-Lagrange 

approach based BEM solver to model the ship motion problem in potential flow, and 

studied the non-linear free-surface effect on the corresponding hydrodynamic 

coefficients. 



15 

The potential theory based solvers are easy to implement. However, it is not 

appropriate for flows that involve shear, vortex and turbulence generation. In order to 

simulate wave propagation in real fluid with rotation and dissipation, a numerical model 

for solving the Navier-Stokes equation is needed. An explicit projection method was used 

in Li and Fleming (2001); Lin and Li (2002); Choi and Wu (2006) for predicting the 

water wave motion. In these studies, the MacCormack explicit scheme was used, and the 

equations were transformed from an irregular calculation domain to a regular one. 

Hendrickson (2005) performed a systematic study of a range of breaking waves by using 

Direct Numerical Simulation (DNS) of the Navier-Stokes equations coupled with an 

Eulerian interface capturing method. 

The absorption of the incident wave at the outflow boundary is always a critical 

issue in the numerical simulation. Two numerical absorbing methods have been 

developed. One is the so-called numerical beach (adding dissipation terms), and the other 

implements an active paddle on the downstream boundary. Clement (1996) coupled these 

two methods and his approach leads to a very good absorption for all wave frequencies. 

Gentaz et al. (2000) presented the simulations of a two-dimensional wave tank in viscous 

flow. Exact nonlinear free-surface boundary conditions and the moving grid technique 

were used to simulate the wave propagation in a tank. A numerical damping method was 

used for wave absorption at the outlet boundary, where the down stream boundary is 

extended using a damping beach with stretched mesh. 

The numerical simulation of unsteady and incompressible flows requires coupling 

the velocities and pressure. The well-known SIMPLE algorithm, presented by Patankar 

and Spalding (1972), is widely applied to solve the corresponding system equations, 

resulting from the finite volume or finite element discretization. An improved SIMPLE 

method was proposed by Van Doormaal and Raithby (1984), which provided a better 
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approximation on the calculation of the corresponding coefficients, and is known as 

SIMPLEC algorithm. Patankar (1980) and Issa (1986) later proposed two improvements 

on the SIMPLE algorithm, which are known as SIMPLER and PISO, respectively. 

The application of the finite volume method always requires the interpolation of 

cell side values from cell center values. The simple and commonly used Central 

Differencing Scheme (CDS) leads to a significant loss in accuracy when the numerical 

grid is non-orthogonal (irregular) as the case when modeling complex geometries. Peric 

(1985) presented a detailed discussion on various differencing scheme that are employed 

for the evaluation of convection and diffusion fluxes. Peric (1990) proved that the 

efficiency of the SIMPLE coupling algorithm is not affected by the grid non-

orthogonality. However, ignoring the grid-orthogonality while calculating the cell side 

values often results in a deteriorated convergence behavior of the overall pressure-

correction scheme. Lehnhauser and Schafer (2002) suggested an alternative technique, 

based on a multi-dimensional Taylor series expansion that preserves the CDS-like 

sparsity pattern of the discrete system and provides a converged solution. The algorithm 

was later extended into three dimensions in Lehnhauser and Schafer (2003). 

In many application areas, the solution domain changes with time due to the 

movement of the boundaries, i.e. free surface and moving hull. Many researchers 

highlighted the importance of taking the Geometric Conservation Law (GCL) into 

account with moving boundaries (Demirdzic and Peric 1988; Thomas and Lombard 

1979). GCL states that the rate of change of the cell volume is equal to the volume swept 

by the cell boundaries. An excellent review on these studies can be found in Ferziger and 

Peric (2002). Related studies were also presented by Lesoinne and Farhat (1996); Farhat 

et al. (2001). 
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Chapter 3: Methodology 

This chapter describes the governing equations, numerical methods and boundary 

conditions that are applied in the present numerical scheme. It is assumed that the flow is 

incompressible, and that the surface tension is neglected on the free surface. The flow 

field is predicted by solving the continuity equation and the Navier-Stokes equations. A 

cell-center-based Finite Volume Method (FVM) and a free-surface tracking algorithm, 

described in the following sections, are applied in the NS2D and NS3D solvers, which 

implement the methods developed in this work.  

 

3.1 GOVERNING EQUATIONS 

For unsteady incompressible flow, the integral representation of the three-

dimensional continuity equation and Navier-Stokes equations are as follows: 

   

U
CV

d = 0,

U

t
d

CV

+ U U
CV

d =
1

( p + F
B
)d

CV

+
2Ud

CV

,

 (3.1) 

where 
   U = (u,v,w)  is the total flow velocity vector with respect to the inertial 

coordinate system with (u, v, w) being the three velocity components respectively,  

represents the volume of the control volume (CV), p stands for pressure, 
  
F

B
 indicates 

the body force vector, (x, y, z) represent the three directions in the Cartesian coordinate 

system,  stands for density, which is assumed to be constant;  represents the kinematic 

viscosity and t indicates time. Note that the gravity force is combined in the pressure 

gradient term. Also note that the present pressure indicates the hydrodynamic pressure 
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(gage pressure – hydrostatic pressure). Since gravity is absorbed into the pressure 

gradient term, the body force is set zero,  F = 0 , in the present problem. 

 

3.2 NUMERICAL FORMULATIONS 

According to the primitive variable method, the momentum equations and the 

continuity equation are coupled and solved iteratively. FVM is applied on the collocated 

grids and it is combined with a pressure-correction scheme. Moving and deforming grids 

are used to follow the hull motion and to track the non-linear free surface. A second-order 

implicit scheme is used for time marching, and a second-order upwind scheme is applied 

for the convective terms in the momentum equations to provide better stability. For 

moving and deforming mesh, the cell-face motion terms are included and calculated by 

following the Geometric Conservation Law (GCL). 

 

3.2.1 Finite Volume Method 

A cell center based finite volume method is applied in the current numerical 

scheme, which provides a better accuracy for non-orthogonal grids and simplifies the 

treatment at the boundary. Moreover, it avoids the complexity of specifying the boundary 

condition at the common node of the hull and the free surface. The orientation of a three-

dimensional cell is plotted in Figure 3.1. For a hexahedral cell with all its faces 

quadrilateral, a cell containing point P has six neighboring points, identified as west, east, 

south, north, bottom, and top points (W, E, S, N, B, and T). The notations of w, e, s, n, b, 

and t refer to the west, east, south, north, bottom, and top cell faces respectively.  
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Figure 3.1: A cell in three-dimensions with its neighboring points and faces. 

Based on the Gauss divergence theorem and considering a cell as a CV, the 

discrete representation of the continuity equation and the conservative form of the 

Navier-Stokes equations can be written as: 
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where   m  is the mass flux of each cell side,  represents the boundary of the CV, n is 

the normal velocity on the cell face, n means the direction normal to the cell face,   n  is 

the unit normal vector to the cell face, subscripts " P " and " f " represent the values 

located at the cell center point P and at the center of the CV face and Af is the area of the 

cell side. In two dimensions, the calculation of the CV volume is simple, but it becomes 

more complicated in three dimensions. The present scheme uses the approach described 

in Ferziger and Peric (2002) to calculate the 3D CV volume. 

 

3.2.2 Moving and Deforming Mesh 

Following Leibnitz and Gauss divergence theorems, the total change of any 

variable , with both increments in time and the corresponding change in moving and 

deforming of the CV, is given as4: 

t
d =

t
d + vgn dAf ,  (3.3) 

where vgn is the normal component of the velocity of the CV boundary. Based on FVM, 

the discrete representation of Eq. (3.3) can be written as: 

( P )

t
=

P

t
+ vgn f Af ,

P

t
=

P

t
+ P t

vgn f Af ,
 (3.4) 

                                                
4 The symbol / t is used to differentiate from that used in the case of the substantive derivative since the 
grid movement is also considered in this work. 
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where the first two terms on the right hand side of the equation are calculated by using a 

time marching scheme. As a special case, if =constant, the above equation becomes 

t
vgnAf = 0. (3.5) 

It is the so-called Geometric Conservation Law (GCL), which states that the rate of 

change of the cell volume is equal to the volume swept by the cell boundaries. It is used 

to calculate the normal grid velocity, as contained in the last term of Eq. (3.4). 

For calculating the rate of change of any variable, an implicit three-level second 

order time marching scheme is applied, where the time derivative at tm+1 can be 

approximated as a backward difference (same approach is applied for the rate of change 

of a CV volume): 

  t
=

3
m+1

4
m
+

m 1

2 t
,  (3.6) 

where t represents the time step size, the superscript "m+1" represents the current time 

step, at which the unknown variables are evaluated, superscripts "m" and "m-1" represent 

the previous time steps. Eq. (3.5) can be rewritten as: 

3 m+1 4 m
+

m 1

2 t
= vgnAf .  (3.7) 
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Figure 3.2: A typical 2D mesh at two time steps and the volume swept by an arbitrary cell 
face. 

As shown in Fig. 3.2, the difference between the "new" and "old" cell volume at 

two time steps can be expressed as the sum of f, swept by the CV faces. The rate of 

change of the cell volume can be further given as: 

3 m+1 4 m
+

m 1

2 t
=
3( m+1 m ) ( m m 1)

2 t
=

(3 f
m+1

f
m )

2 t
,  (3.8) 

where f
m+1

=
m+1 m ; and f

m
=

m m 1 . From Eq. (3.7) and Eq. 

(3.8), the normal grid velocity on each cell face is obtained: 

vgn =
3 f

m+1
f
m

2Af t
.  (3.9) 
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When Eq. (3.4) is substituted into Eq. (3.2), the discrete momentum equation can be re-

written as:  
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3.2.3 Approximation of Fluxes and Cell Face Values 

This section presents the procedure and formulations for calculating the cell face 

value, the normal derivative of any variable, and the convective flux. More details of the 

derivations of these equations are described in Appendix A. 

 

 

Figure 3.3: Arbitrary east face of a 3-D cell with the computational points. 
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The cases that involve interpolation of values at the center of a cell face are: (i) 

the calculation of the mass flux for each cell face required by the continuity equation; (ii) 

the calculation of the pressure and velocity gradients required by the momentum 

equations; (iii) the averaged pressure derivative with respect to the normal direction used 

in the pressure-correction method. Figure 3.3 shows an arbitrary east side of a 3-D cell 

with corresponding neighboring computational points. The simplest way to calculate the 

cell face value is by using the linear interpolation between the cell-containing point P and 

the neighboring point (NB=W, E, S, N, T, B) on either side of the cell face. However, 

when the grid is irregular, the line that connects P and NB for each cell face may not pass 

through the cell face center. As a result, the approximation to the surface integral is no 

longer accurate to second order. For any variable , one can preserve the accuracy by 

using Taylor series expansion: 

 
f = f ' + X f f ' f ' + H f ' + X f f ' f ' ,  (3.11) 

where H stands for higher-order terms, which are neglected, f  represents a point on the 

line between P and NB with:  

 

XNB f '

XP f '

=

XNB f

XP f

,  (3.12) 

and  X  represents the distance vector between the two points. The values at point f  

are calculated using linear interpolation between points P and NB on either side of the 

face: 
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f ' (CP ) f P + CNB NB ,

f ' (CP ) f P + CNB NB ,
 (3.13) 

where (CP)f and CNB are the corresponding coefficients. Based on the Gauss divergence 

theorem, the variable gradient can be written as: (the same approach applies for 

neighboring point NB) 

 

P

1
f nAf .  (3.14) 

Note that the cell face value obtained from Eq. (3.13) will be mentioned hereafter as an 

interpolated value. 

 

 

Figure 3.4: Arbitrary east face of a 2D cell with the computational points and their 
auxiliary points. 

Both the diffusive flux term in the momentum equation and the velocity-

correction term in the pressure-correction method require the calculation of the normal 

derivative of a variable at a cell-face center. Figure 3.4 shows an arbitrary east side of a 

2D cell with the computational points and their auxiliary points, where "  " indicates the 
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auxiliary points. For a cell with arbitrary shape, the normal derivative of any variable  

on the cell face can be approximated as a central difference:  

 
n f

NB ' P '

(XNB ' XP ' ) n
,  (3.15) 

where  X  represents the position vector. The auxiliary points P' and NB' are defined as: 

 

XP '( )
f
= X f (X f XP ' ) n n,

XNB ' = X f (X f XNB ' ) n n.
 (3.16) 

The calculation of the convective flux for each cell face is required in the 

momentum equations. In order to identify the flow direction and to stabilize the 

numerical scheme, a second order upwind scheme is applied. The cell-face flow velocity 

vector for the convective term is also calculated through Taylor series expansion, but 

with an additional direction coefficient Cup, where 

 

U f Cup (UP + X f P UP ) + (1 Cup )(UNB + X f NB UNB ),

Cup = 0.5(vn + vn ) / vn ,
 (3.17) 

Using FVM, the implementations of Eq. (3.6), Eq. (3.15), and Eq. (3.17) in Eq. (3.10) 

yield a system algebraic equation of the momentum equation: 

   

a
P
U

P
+ a

l
l

U
l
=

1
p

f
nA

f
+ â

P
U

P
+ â

l
l

U
l
,

l = surrounding cells,

 (3.18) 
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where aP , al , âP  and âl  are the corresponding coefficients and the subscript "l" 

represents the surrounding cells, which includes all the NB points and the neighboring 

points around each NB point. When the grid is regular ( f  and f  on each cell face are 

located at the same point), the coefficients with "^" are equal to zero, and the above 

equation can be solved by itself. Otherwise, an iterative procedure is required, and Eq. 

(3.18) has to be solved iteratively with Eq. (3.14) until it reaches the convergence 

criterion.  

 

3.2.4 Pressure-Correction Method 

A pressure-correction method (SIMPLEC algorithm) is used to correct the 

velocities on each cell face and to calculate the pressure at the cell center point P. The 

acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations, and 

the algorithm was developed by Patankar and Spalding (1972). The acronym C indicates 

the modification of the scheme on the approximation of the coefficients (Van Doormaal 

and Raithby 1984). The pressure-correction term is obtained by forcing the corrected 

normal velocity on the cell face to satisfy the continuity equation with a guess-and-

correct procedure. The correction equations are given as: 

p = p + p ,

v
n
= v

n
+ v

n
,

v
n
= d

f

p

n
f

 (3.19) 

where the superscript " ' " indicates the correction term, "~" represents the provisional 

value and df is the corresponding coefficient. The scheme is known as SIMPLEC 
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algorithm if 
 
d

f
= a

p
+ a

ll
 (Van Doormaal and Raithby 1984). According to FVM, 

the sum of the mass flux through each cell face is given as: 

   

m
f

v
n
A

f
= (v

n
+ v

n
)A

f
= 0.  (3.20) 

The equation is formed into a Poisson’s equation of pressure-correction terms, which will 

be mentioned hereafter as the pressure-correction equation. Using Eq. (3.15) with 

 = p , the discrete algebraic equation becomes: 

   

h
P

p
P
+ h

l
p

l
l

= v
n
A

f
+ ĥ

P
p

P
+ ĥ

l
p

l
l

,

l = surrounding cells,

 (3.21) 

where hP , hl , ĥP  and ĥl  denote the corresponding coefficients. The numerical 

scheme is based on a non-staggered grid, where all the unknown variables are located at 

the cell center. Note that when 
  
ĥ

P
 and 

  
ĥ

l
 are equal to zero, the above equation can be 

solved directly. Otherwise, the same iterative approach, as applied in Eq. (3.18), is used 

for Eq. (3.21). In order to avoid the checkerboard pressure problem, the normal 

component of the interpolated cell-face velocity is thus modified by the difference 

between the normal component of the interpolated pressure gradient and the normal 

pressure derivative calculated at the cell face: 

   

v
n
=U f n + d

f
( p)

f
n

p

n
f

,  (3.22) 
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where the overbar indicates the interpolated value at the cell face. The procedure of the 

pressure-correction algorithm can be summarized as follows: 

 

1. Start the calculation of the field at new time step m+1 using the latest 

solution   U
m  and 

 p
m  as starting estimates (the provisional value) for 

   U
m+1  and 

  p
m+1  

2. Assemble and solve the linearized system of the algebraic equations 

(momentum equations) for new    U
m+1 . 

3. Assemble and solve the pressure-correction equation (continuity equation/ 

Poisson’s equation) for  p . 

4. Correct the normal velocity at the cell face center and the pressure value at 

the cell center point P. 

5. Repeat step 2~4, by using the latest solution as updated estimates (the 

provisional value) for    U
m+1  and 

  p
m+1 , until all the corrections are 

smaller than a predefined threshold. 

6. Move on to the next time step. 

 

The linear sparse systems of the equations resulting from the Poisson equation 

and the momentum equations are then solved using Generalized Minimal Residual 

(GMRES) algorithm. Note that all variables in NS2D/NS3D are made non-dimensional 

by using reference scales. More details are described in Appendix B. 
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3.3 BOUNDARY CONDITIONS 

This section describes three types of boundary conditions that are used in study: 

the velocity inlet, the wall boundary (stationary/moving), and the free surface. In the 

present numerical scheme, all the values on the domain boundaries are calculated at the 

center of the cell face. 

 

3.3.1 Velocity Inlet and Wall Boundaries 

For the velocity inlet, each velocity component is specified. For a stationary or a 

moving wall, a kinematic boundary condition is applied so that the flow does not 

penetrate the hull geometry: 

vn = vgn ,  on the domain boundary,  (3.23) 

In the case of viscous flow, a no-slip boundary condition is applied, where the fluid 

particle velocities on the wall are consistent with the hull velocities. In the case of 

inviscid flow, the tangential velocity is calculated using Taylor series expansion. Based 

on FVM, the discrete formulation is given as: 

 

vs =UDB s,

vs (UP + XDB P UP ) s,

1
XDB P nAf vs UP s + XDB P

1
(U f s )nAf

DB

,

 (3.24) 

where the subscript "DB" represents the value on the domain-boundary cell face, 

DB  represents all the cell sides except the one on the domain boundary, vs  is the 
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tangential component of the flow velocity at the cell face center on the domain boundary 

and  s  denotes the unit tangential vector to the cell face on the domain boundary. Note 

that the tangential vector in 2D can be determinated easily using the distance vector 

between two node points on the domain-boundary cell face. In the case of 3D, however, 

more than one tangential vector exists on the domain-boundary cell face. Each unit 

tangential vector is obtained using the distance vector between the center point and any 

node point on the domain-boundary cell face: 

 

s =
X f tn

X f tn

,  (3.25) 

where the subscript "tn" denotes any node point on the domain-boundary cell face. The 

normal component and any two tangential components of the flow velocity are used to 

solve the corresponding 
 
UDB . Note that using this approach, all the node points on each 

domain-boundary cell face except for the free surface boundary are assumed to be on the 

same plane. Pressure on all domain boundaries except on the free surface is obtained 

from linear extrapolation of the values at the internal cells, which is given as: 

 

pDB pP + XDB P pP ,

1
XDB P nAf pDB = pP + XDB P

1
pf nAf

DB

.
 (3.26) 
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3.3.2 Free Surface boundary  

The non-linear boundary conditions are applied on the free surface, where the 

Kinematic Free Surface Boundary Condition (KFSBC) and the Dynamic Free Surface 

Boundary Condition (DFSBC) are given as: 

  

KFSBC: v
FSn

v
n
= 0,

DFSBC:  p
ap
= p g = 0,

 (3.27) 

where  represents the wave height; vFSn is the normal component of the free surface 

velocity. KFSBC indicates that vFSn is equal to the normal component of the flow velocity 

at the free surface. DFSBC states that when the surface tension is neglected, the total 

pressure on the free surface is equal to atmospheric pressure pap. For consistency, the 

gravity force is defined in the y-direction in both NS2D and NS3D. On the free surface, 

the pressure-correction term becomes zero when pressure is specified using DFSBC. 

Thus, the pressure-correction value at cell center point P in each free-surface cell is 

interpolated using Taylor series expansion, which leads to: 

 

pFS = 0 pP + XFS P pP ,

pP XFS P

1
npf Af

FS

,
 (3.28) 

where the subscript "FS" indicates the value on the free-surface cell face and FS  

represents all the cell sides except the one on the free surface. To calculate the pressure-

correction term, Eq. (3.28) is applied instead of the pressure-correction equation, and the 

mass conservation for each free-surface cell is used for calculating the mass flux through 

the free surface:  



33 

 

mFS (vnAf )FS = (vnAf )
FS

.  (3.29) 

In this way, mass is still conserved both globally and in each cell, and the normal 

component of the flow velocity on the free surface is obtained. 

 

 

Figure 3.5: Kinematic Boundary Condition on the Free Surface. 

 

As shown in Fig. 3.5, NS2D/NS3D applies a free-surface tracking algorithm, where the 

normal grid velocity on the free surface is assumed to be equal to the normal free-surface 

velocity as well as the normal flow velocity on the free surface. KFSBC then becomes the 

following wave equation, which describes the rate of change of the wave elevation: 

 

vFSn = vgn = vn =
mFS

(Af )FS
,

vgny =
mFS

(Af )FS
ugnx wgnz ,

t
= vg =

mFS

(Af )FS ny
ug
nx
ny

wg

nz
ny
,

 (3.30) 
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where (nx, ny, nz) are the Cartesian components of  n  and (ug, vg, wg) indicate the 

Cartesian components of the grid velocity. The wave elevation at tm+1 is obtained from the 

equation above by following the second-order three-time-level implicit scheme. Within 

the pressure-correction algorithm, the procedure used in NS2D/NS3D for calculating the 

fully non-linear free surface follows (modifications of the pressure-correction algorithm 

are made only on those cells along the free surface): 

 

1. While solving the momentum equations, pressure on the free surface is 

specified by following DFSBC. Since the surface tension is neglected, the 

viscous terms are excluded from the momentum equations. 

2. Instead of solving the pressure-correction equation, Eq. (3.26) is applied 

for calculating p'. 

3. Enforce the local mass conservation in each cell on the free surface to 

calculate the normal flow velocity n. 

4. Correct the position of the free surface to enforce KFSBC, and re-mesh. 

5. Move on to the next pressure-correction iteration if necessary. 

 

A similar approach was described in Ferziger and Peric (2002). As they mentioned, the 

critical issue of this procedure is the algorithm for the movement of the free surface. The 

problem is that there is only one discrete equation per free-surface cell but more than one 

node on the free-surface cell face needs to be moved. In the present scheme, the wave 

height for each cell is not calculated at those vertices but at the cell-face center. 2D 

structured grids are used as an example, which is illustrated in Fig. 3.6, where L0 and L1 

are the vertices on the free surface and one level below the free surface respectively. 

After solving Eq. (3.30), the new node position on each free-surface cell face is located at 
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the intersection of y=  and the line passes through each L0 and L1 vertices. However, for 

the same vertex, a different location is predicted from different cells, which results in an 

elevation jump among the free-surface cells. The averaged vertex location on the free 

surface is then defined by interpolating wave elevation for each associated cell with 

weighted cell-face area (length in 2D). The new free-surface position is shown in Fig. 3.6 

as the dashed line, and those cells below the free surface are smoothed using an 

exponential distribution. Therefore, structured quadrilateral cells are required in x-y and 

y-z planes for those cells close to the free surface. The advantage of using this scheme is 

that it is straightforward and easy for coding. However, the cell-face center on the free 

surface and the wave elevation for each free-surface cell face are not necessarily located 

at the same point. The difference between the two positions is negligible when the free-

surface movement is small within one time step, which puts a constraint on the time step 

size in NS2D/NS3D. 

 

Figure 3.6: 2D cells under the free surface, and the free-surface position. 
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Chapter 4: Verification and Validation of NS2D 

For verification and validation purposes, the modeling of 2D flow around a ship-

shaped hull is simplified into two types of simulations. In the first type of simulation, the 

study is performed in the case of a submerged body, where the free surface effect is 

excluded. Three validation cases are performed for the submerged body simulations: 

vertical plate subject to alternating inflow, submerged hull subject to oscillating inflow, 

and submerged hull subject to prescribed roll. The other type of simulation is conducted 

on a wave-maker problem. The purpose of this type of simulation is to validate the free-

surface tracking algorithm used in NS2D. The results from NS2D are then compared 

against those from the commercial CFD tool FLUENT and other existing experimental 

data. 

 

4.1 VERTICAL PLATE SUBJECT TO ALTERNATING INFLOW 

In the oscillating flow problem, the objective is to understand the physics of the 

separated flow about the bilge keels of a hull in a simplified geometry where the vertical 

plate can be viewed as a slender bilge keel placed on a flat wall without the presence of 

the free surface. This section describes the background and the NS2D simulation of the 

vertical plate problem. The results from the NS2D simulation are compared to the 

experimental measurements provided by Sarpkaya and Okeefe (1996) for different 

Keulegan-Carpenter numbers. 
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4.1.1 Background 

 

Figure 4.1: Grid and domain orientation for the vertical plate problem. 

 

Sarpkaya and Okeefe (1996) performed an experimental study by putting a thick 

aluminum plate inside a U-shaped water tunnel consisting of a 0.91m wide, 1.42m high 

and 0.67m long horizontal section, and two vertical legs of 0.91m by 1.83m by 7.62m. 

The test body is 6mm thick, 0.91m wide and 102 mm high, and is subject to a horizontal 

sinusoidal inflow. Figure 4.1 presents the fluid domain and the corresponding boundary 

conditions used in the NS2D solver. The domain is 16h0 long and 8h0 tall, and is meshed 

with  201 101 structured cells. The domain is chosen this way so that the vortices 

created by the separated flow around the plate would not reach the upstream, downstream 

and top boundaries. All the variables in the NS2D simulation are made non-dimensional 

with respect to the plate height ho and the sinusoidal inflow amplitude Uin. The 

corresponding Reynolds number in the NS2D solver is therefore defined as 
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Re =U
in
h
o
/ . According to Sarpkaya and Okeefe (1996), the Keulegan-Carpenter 

number for the plate problem is defined as 
  
KC =U

in
T

in
/ h

o
, where Tin is the period of the 

sinusoidal inflow, and the frequency ratio  is given as Re/KC=1845. In the following 

studies, KC ranges from 0.5 to 10, and the corresponding Reynolds number ranges from 

992.5 to 18450, respectively. 

 

4.1.2 Force and Error Calculations 

The force caused by the sinusoidal inflow exerted on the plate can be expressed 

by Morison’s equation. Following Sarpkaya and Okeefe (1996), the non-dimensional 

formulation is given as: 

2FP
hoUin

2
= Cd cos cos + Cm

2 2

KC
sin ,  (4.1) 

where 
  
= 2 t / T

in
, Fp represents the horizontal force acting on the plate, 

d
C  and 

m
C  

are the drag and inertia coefficients, respectively. The drag and inertia coefficients are 

extracted from the force history by using Fourier analysis: 

Cd =
3

4 0

2 Fp cos

hoUin
2
d ,  Drag coefficient,

Cm =
2KC

3 0

2 Fpsin

hoUin
2
d ,  Inertia coefficient,

 (4.2) 

where the force is calculated by integrating the pressure along the plate surface : 



39 

Fp = pnxd ,  (4.3) 

where  is the plate surface length.  

As to the convergence analysis, the force history with the highest grid resolution 

is used as the "exact" solution. The error difference F between the "exact" solution and 

the force history from another grid resolution is defined as: 

F =
1

NT

(Fc Fe )i
2

i=1

NT

,  (4.4) 

where NT is the number of the time steps per period, Fe indicates the "exact" force value, 

Fc represents the force value from a coarser grid and the subscript "i" represents the time 

index at each time step. 

 

4.1.3 Results 

As shown in Fig. 4.2, the sensitivity analyses in space and in time are performed 

in order to validate the numerical scheme. The top figure shows the force histories with 

different cell sizes in the vertical direction, where the number of the grids on the plate 

surface is proportional to the cell numbers in the vertical direction. The bottom figure 

presents the semi logarithmic plot of the error difference for different total numbers of 

cells by following Eq. (4.4), where the result of 200 150 grid is used as the "exact" 

solution. The slope of the convergence rate is about 2, which is consistent with the 

second-order accurate scheme in space, as used in the NS2D solver. As a result, the 

resolution of 100 cells in the vertical direction (20 cells on the plate surface) is sufficient 
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for this particular plate problem. The comparison of the force histories with different grid 

resolutions in the horizontal direction is shown in Fig. 4.3, and the sensitivity analysis in 

time step size is presented in Fig. 4.4. As shown in these convergence studies, a grid size 

of 200 100  and a time step size of 0.001T are adequate, and thus will be implemented 

in the subsequent vertical plate problems. 

The predicted flow fields for KC=1 from NS2D are shown in Fig. 4.5. A pair of 

counter-rotating vortices is formed at the edge of the plate, which then sheds away in the 

diagonal direction, either to the left or the right side of the plate. These vortex structures 

resemble qualitatively to those drawn in Sarpkaya and Okeefe (1996). The drag and the 

inertia coefficients obtained from NS2D for a range of KC numbers are presented in Fig. 

4.6 and Fig. 4.7. These coefficients are calculated from the force history using Eq. (4.2). 

The result shows that the coefficients predicted from NS2D are close to those from the 

experiments of Sarpkaya and Okeefe (1996). The NS2D results are considered validated 

in the vertical plate problem. In the next section, and the solver will be applied to a case 

with a more complex geometry, fixed submerged hull problem. 
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Figure 4.2: Convergence studies in space with different grid resolutions in the vertical 
direction. (a) Non-dimensional force histories, (b) logarithmic plot of F for 
different numbers of cells. 
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F 
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Figure 4.3: Convergence studies on non-dimensional forces over one period with 
different number of cells in the horizontal direction of the domain. 

 

Figure 4.4: Convergence studies on non-dimensional forces over one period with 
different time step sizes. 
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Figure 4.5: Streamline and vorticity contour plots predicted by NS2D solver with KC=1 
at (a) start of the period, (b) quarter of the period , (c) half of the period, 
(d)3/ 4 of the period. 

 

(a) (b) 

(c) (d) 
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Figure 4.6: Comparison between the drag coefficients obtained from the NS2D solver 
and from measurements by Sarpkaya and O’Keefe (1996) in the case of 
oscillating flow past a flat plate problem. 

 

Figure 4.7: Comparison between the inertia coefficients obtained from the NS2D solver 
and from measurements by Sarpkaya and O’Keefe (1996) in the case of 
oscillating flow past a flat plate problem. 

NS2D 
Sarpkaya and O’Keefe (1996) 

NS2D 
Sarpkaya and O’Keefe (1996) 
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4.2 SUBMERGED HULL SUBJECT TO OSCILLATING INFLOW 

The second validation test for NS2D in the submerged problem group can be 

viewed as a simplified case or a pre-test case for the FPSO hull roll motion problem. In 

this section, the results from the NS2D simulation are compared to those from the 

commercial software FLUENT in laminar and turbulent flow conditions. 

 

4.2.1 Background 

 

 

Figure 4.8: Fluid domain and corresponding domain boundaries of a submerged hull 
subject to alternating flow. 

 

The 4% bilge keel model, will be described in subsection 5.1.2, is implemented in 

the problem of a submerged hull subject to oscillating inflow. The hull geometry and the 

mesh are similar to those used in the FPSO hull roll motion problem, except that the 

domain size is smaller in this case. The flow domain and its corresponding boundaries are 
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shown in Fig. 4.8. The free surface is excluded and replaced by a symmetric boundary in 

this case. All the variables in this case are made non-dimensional regarding to hull beam 

B and the period Tin of the sinusoidal inflow, where the amplitude of the sinusoidal inflow 

is given as U
in
= 0.1B / T

in
. The domain size is 8B long and 4B wide. The corresponding 

Reynolds number is defined as 
  
Re = B

2 / ( T
in

) , and it ranges from 103 to 106. 

 

4.2.2 Results 

The pressure distributions along the fixed submerged hull predicted from NS2D 

and FLUENT at t/T=1.75 are presented in Fig. 4.9. The Reynolds number in both 

simulations is equal to 105, and identical mesh is used for both runs. The results from 

NS2D compare well with those from FLUENT. As shown in Fig. 4.10, more studies are 

conducted only using FLUENT, in which the Reynolds stress model with standard wall 

function is applied to study the turbulent flow effect. The corresponding y-plus for the 

grid used in this case is around 40. The result shows significant deviation from others 

when the Reynolds number drops to 103 and the flow is laminar, and the turbulent flow 

effect has been found to be insignificant. For cases with such a low Reynolds number, it 

is beyond the scope of this study and will not be discussed further. In the following 

section, more studies on the submerged hull problem will be investigated, where the hull 

is subject to prescribed roll motions, and more studies on the effect of turbulent flow will 

be also addressed. 
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Figure 4.9: Pressure distributions along the fixed submerged hull subject to alternating 
inflow from NS2D and FLUENT at t/Tin=1.75 ( 5

Re 10= ). 

 

Figure 4.10: Pressure distributions along the fixed submerged hull subject to alternating 
inflow from FLUENT at different Reynolds numbers (Laminar or Turbulent 
flow) at t/Tin =2.75. 
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4.3 PRESCRIBED ROLL MOTION OF A SUBMERGED HULL 

The third validation case for NS2D in the submerged problem group is performed 

in this section, where the submerged round bilge hull (hull bilge geometry will be 

explained in subsection 5.1.2) is subject to prescribed roll motions. The correlation 

between the results from NS2D and FLUENT is presented, and the turbulent flow effect 

is studied using FLUENT. 

 

4.3.1 Background 

 

 

Figure 4.11: Computational domain and corresponding domain boundaries of the 
submerged hull under prescribed roll motion. 

Figure 4.11 shows the computational domain and the corresponding domain 

boundaries, where the domain is 8B long and 8B wide. The hull is only allowed to roll 

about a coordinate system with its origin O, which is the center of the hull in this case. 
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The forced roll motion starts smoothly with a ramp function Rf (found necessary in order 

to avoid strong transient flows at the earlier steps of the calculation). The corresponding 

roll angle  is defined as: 

  
= R

f 0
sin( t),  (4.5) 

where  represents the roll frequency,  stands for the roll angle and 
0

 is the 

amplitude of the roll angle in radians. The ramp function is given as 

  

R
f
=

tanh( t)

1
,
t / T < 1

t / T 1
. (4.6) 

The hydrodynamic moment M  on the hull is evaluated by integrating the pressure along 

the body surface: 

M = pn rd
H(t)

,  (4.7) 

where r  represents the distance vector from the center of rotation; and  is the hull 

length.  

In order to be consistent with the ship-shaped hull roll motion problem, which is 

going to be studied in the next chapter, all the variables are made non-dimensional with 

respect to the hull beam and the prescribed roll period T. Based on Vugts (1968), the 

angular frequency is made non-dimensional in terms of the hull beam and gravity. The 

corresponding parameters are defined as: 
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Fn =
B

2g
,  Froude number,

Re =
B

2

T
,  Reynolds number.

 (4.8) 

The non-dimensional frequency, Froude number Fn, is kept in the range between 0.4 and 

1.2. According to Yeung et al (2000) and Yuck (2003), the corresponding Reynolds 

number used in the NS2D solver ranges from 4.6 104 to 1.39 105. Note that in this 

submerged roll problem, Fn does not directly appear in the governing equations or in the 

boundary conditions, but it is proportional to Re. As result, the study of different roll 

frequencies becomes the study of the effects of viscosity. 

 

4.3.2 Mesh Movement 

The meshes used in both NS2D and FLUENT are generated using GAMBIT, a 

grid generator provided by FLUENT Company. One of the issues for simulating the roll 

motion of the hull is the movement of the cells. One can either re-mesh and smooth those 

cells close to the hull or define a grid zone interface to separate the moving zone and the 

stationary zone. 
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Figure 4.12: Mesh movement of NS2D in the case of a submerged hull. 

 

Figure 4.13: Mesh movement of FLUENT in the case of a submerged hull. 
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In NS2D, the re-mesh and smooth approach is applied as shown in Fig. 4.12, 

where certain layers of cells from the hull are defined as the rigid rotational zone. From 

the edge of the rigid rotational zone, certain layers of cells are called the smoothing zone, 

where an exponential function is given to smooth out the grid rotation. When the 

dynamic mesh is applied in NS2D, structured and quadrilateral cells are required in the 

rigid-rotational zone and the smoothing zone. On the other hand, the grid zone interface 

approach is used in FLUENT, as shown in Fig. 4.13, where the fluid domain is separated 

into a rigid moving zone and stationary zone by a grid zone interface. The values on the 

interface are interpolated from the internal cell values on either side of the interface. 

 

4.3.3 Results 

The study of a submerged round bilge hull subject to prescribed roll motions is 

performed in this subsection, where the roll angle amplitude is equal to 5.75 degrees. The 

simulations are performed using NS2D and FLUENT. In the FLUENT runs, the 

simulations are conducted with or with of the implementation of the turbulent model. 

Note that the effect of turbulence is only studied by using FLUENT, where FLUENT(L) 

represents the laminar flow FLUENT solver, and FLUENT(T) indicates the turbulent 

flow FLUENT solver. The k-  turbulent model is implemented in FLUENT(T) with the 

enhanced wall treatments, and as shown in Fig. 4.14, the corresponding y-plus along the 

hull surface for the grid applied in FLUENT(T) is smaller than 7.5. 
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Figure 4.14: y-plus along the round bilge hull in FLUENT(T) simulations ( 0=5.75o). 

Figure 4.15 shows the moment histories for Fn=0.4 predicted from NS2D, 

FLUENT(L) and FLUENT(T). The vorticity contours at t/T=4.00 and t/T=4.40 are 

plotted in Fig. 4.16, where the results from NS2D, FLUENT(L), and FLUENT(T) are 

shown in the top, mid and bottom figures, respectively. Note that the hull motion is at the 

maximum angular velocity when t/T=4.00, and the roll moment is close to its peak at 

t/T=4.40. Despite the fact that the flow dissipation is slightly higher in the turbulent flow 

simulation due to the presence of turbulent viscosity, the simulations from NS2D, 

FLUENT(L) and FLUENT(T) show a very similar flow pattern. The corresponding 

pressure distributions on the hull surface from NS2D, FLUENT(L) and FLUENT(T) are 

presented in Fig. 4.17, and the prediction of the pressure distributions from these three 

solvers also shows a fairly good agreement. As a result, all the moment histories 

predicted by using NS2D, FLUENT(L) and FLUENT(T) are almost identical to each 
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other, and the turbulent flow effect is found to be very small in this case. More studies on 

the effect of turbulence with the presence of the free surface and with different hull 

geometries will be presented in the next chapter. 

Note that NS2D and FLUENT simulations are performed using a 16 nodes 

workstation with dual AMD Opteron 1.6 Hz processors, and 2GB memory per node. The 

computational time for a NS2D run is about 1.5 hr / per period by using a single CPU. On 

the other hand, the FLUENT run requires 1.25 hr to simulate a period of roll motion by 

using parallel computing with 4 CPUs. The difference on the numerical settings between 

the two solvers and more studies on the prescribed roll motion of ship-shaped hulls are 

presented in the next chapter. 

 

 

Figure 4.15: Moment histories of submerged round bilge hulls for Fn=0.4 and 0=5.75o 
from NS2D, FLUENT(L), and FLUENT(T). 
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Figure 4.16: Vorticity magnitude contour of the submerged round bilge hull for Fn=0.4 
and 0=5.75o from (top) NS2D, (mid) FLUENT(L), and (bottom) 
FLUENT(T) at t/T=4.00 and t/T=4.40. 
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Figure 4.17: Pressure distributions on the submerged round bilge hull from NS2D, 
FLUENT(L) and FLUENT(T) at t/T=4.00 and t/T=4.40 (Fn=0.4 and 

0=5.75o). 
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4.4 PISTON TYPE WAVE-MAKER 

In order to investigate and validate the non-linear boundary conditions on the free 

surface, the inviscid version of the Navier-Stokes solver, NS2D (IN), is applied to a 

piston type wave-maker problem. The free-surface wave profile from the NS2D 

simulation is compared to another numerical result predicted by Lin (1984), who used a 

potential flow solver, and no linearization assumption was made on the free-surface 

boundary conditions. 

 

 

Figure. 4.18: Computational domain and corresponding domain boundaries of a 2D 
piston type wave-maker problem. 

In this validation case, the viscous terms in the momentum equations are excluded 

in NS2D(IN), and all the variables are made non-dimensional in terms of water depth hd 

and characteristic velocity 
 

gh
d

. The piston wave-maker moves periodically with a 

frequency of 
  
( / 2) g / h

d
, an amplitude of A=0.05hd, and a time step size of 

t / h
d
/ g = 0.1. The computational domain and corresponding domain boundaries are 
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presented in Fig. 4.18, where the computational domain is about 20 water-depths long, 

approximately equal to 8 wavelengths. As shown in Fig. 4.19, the wave elevation 

predicted from NS2D(IN) shows decent agreement with the numerical solution from Lin 

(1984). The prediction of the non-linear free-surface elevation is also well validated in 

this case.  

 

 

Figure 4.19: The wave elevation of a piston type wave maker at 
  
t / h / g = 19.10 . 

 

NS2D 
Lin (1984) 
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4.5 SUMMARY 

A two-dimensional unsteady Navier-Stokes solver has been verified and validated 

in several different test cases, a vertical plate subject to an alternating inflow, a fixed 

submerged hull subject to oscillating inflow, prescribed roll of a submerged hull and the 

wave–maker problem. The results predicted from NS2D show a fairly good agreement 

with those from other numerical methods in all cases. In the next chapter, NS2D will be 

applied to the ship-shaped hull motion problem, where the effect of free surface is 

included. 
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Chapter 5: Two-Dimensional Ship-Shaped Hull 

In this Chapter, the NS2D solver is applied to a ship-shaped hull motion problem, 

where the free surface is present. Two types of simulations are presented in this chapter. 

In the first type of simulation, ship-shaped hulls are subject to prescribed roll motions. 

The second type of simulation studies the free-decay motions for hulls with a given initial 

heave or roll displacement. 

 

5.1 PRESCRIBED ROLL MOTION 

The background of the prescribed ship-shaped hull roll motion simulations is 

described in this section. Also presented are the studies on the sensitivity analyses in 

space and in time, the correlation between the present numerical scheme and other 

methods, the investigation of the free-surface effect, and the studies of different hull 

geometries and roll angles. 

 

 

5.1.1 Background 

Certain assumptions are made to simplify the complex nature of the forced roll 

motion. The hull is assumed to roll about a coordinate system with its origin O at the 

intersection of the mean free surface and the longitudinal axis of the hull. The beam over 

draft ratio B/D is equal to 2, and the center of gravity is situated at O. The orientations of 

the boundaries and the computational domain are shown in Fig. 5.1, where SF(t) and SH(t) 

represent the instantaneous positions of the free-surface and the hull surface respectively. 
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Figure 5.1: Computational domain and corresponding domain boundaries of the FPSO 
hull forced roll motion problem. 

 

The ship-shaped hull is forced to rotate periodically following exactly the same 

roll motion as used in the submerged hull roll motion problem. The corresponding total 

force vector Fo  and total moment Mo on the hull are evaluated by integrating the 

pressure on the wetted portion of the body surface. 

 

Fo = (p gy)nd
H(t )

,  Mo = (p gy)n rd
H(t)

,  (5.1) 

where  r  represents the distance vector from the center of rotation and  stands for the 

hull length. Note that in order to be consistent with the results from the experiments by 

Vugts (1968), Yeung et al. (1998) and Yeung et al. (2000), and the FLUENT 

calculations, the hydrostatic pressure term is included in Eq. (5.1). 
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Following Yeung et al. (2000) and Wilson (2006), the hydrodynamic moment 

M  is obtained from the total moment by subtracting the hydrostatic restoring term Mr, 

which is given as: 

  

M = M
o

M
r
,

M
r
= g Bsin( ) / 12,

 (5.2) 

where =B2/2 denotes the 2D hull displacement. Based on the linear theory, the 

hydrodynamic moment can be written as a combination of the added-mass a66 and 

damping b66 terms:  

   
M = a

66
b

66
,  (5.3) 

where  stands for the angular acceleration. The added-mass and damping coefficients 

can be extracted from the roll moment history using Fourier analysis (averaged from last 

three periods), which are given as: 

  

a
66
=

1

o

M sin( t)dt

0

T

,

b
66
=

1

o

M cos( t)dt.
0

T
 (5.4) 

For consistency and comparison purposes, the hydrodynamic coefficients are normalized 

following Vugts (1968) and Yeung et al. (2000), 
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a
66

*
=

a
66

B2
,  b

66

*
=

b
66

B2

B

2g
. (5.5) 

In NS2D, the non-dimensionalization parameters applied in the prescribed roll motion 

problem are exactly the same as those used in the submerged hull case. According to 

Yeung et al (2000) and Yuck (2003), the hull beam used in the experiment is equal to 

0.3048m, and the non-dimensional frequency Fn varies from 0.4 to 1.2. The 

corresponding Reynolds number and the non-dimensional gravity used in the NS2D 

solver are illustrated in Table 5.1. 

 

Fn = B / 2g  T(sec)   g
*
= g / (B / T

2 )  Re = B
2
/ T  

0.4 1.942 123.370 46,335 

0.6 1.295 54.831 69,503 

0.8 0.971 30.843 92,670 

1.0 0.777 19.739 115,838 

1.2 0.647 13.708 139,006 

Table 5.1: The non-dimensional parameters for various roll frequencies used in NS2D. 

 

As shown in Fig. 5.2, for both NS2D and FLUENT runs, the mesh movement 

approaches applied in the ship-shaped hull roll motion problem are similar to those used 

in the submerged hull cases. In NS2D, when the free surface is present, the grids close to 

the free surface also need to be re-meshed and smoothed. On the other hand, as shown in 

Fig. 5.3, FLUENT still uses the grid interface approach, as described in the submerged 
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roll case, even though it requires higher grid resolution in the area close to the free 

surface. 

 

Figure 5.2: Mesh movement of NS2D in the case of a ship-shaped hull. 

 

Using he re-mesh and smooth algorithm is simple to apply in coding, but one has 

to make sure that the cell volume does not become negative (cell is not over-twisted) 

while simulating the roll motion of hulls, particularly in the case when the free surface is 

present. On the other hand, using the grid zone interface approach has the advantage of 

keeping the cell volume the same for the entire time domain, which avoids cell-

deforming issue. However, with the presence of the free surface (two-fluid interface), the 

numerical simulation is very sensitive to the grid resolution close to the free surface, 

particularly at the intersection of the grid zone interface and the free surface. Fig. 5.3 
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shows a good example. When the rigid moving zone is subject to a large roll angle, the 

grid resolution at the intersection of the grid zone interface and the free surface is not 

sufficient. As a result, an artificial wave reflection may occur at the grid zone interface.  

 

 

Figure 5.3: Mesh movement of FLUENT in the case of a ship-shaped hull. 

 

Both NS2D and the commercial solver, FLUENT, are based on FVM, but these two 

solvers apply different algorithms for the boundary conditions and have different 

numerical settings. In addition to the difference on the grid movement, NS2D uses the 

free-surface tracking algorithm, but FLUENT applies the Volume Of Fluid (VOF) 

method to predict the free surface. These differences are listed in Table 5.2. Note that the 

FLUENT version used in this study is 6.3.26 (version up-to-date), and the settings can be 
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different from another FLUENT version. In this version, the time marching scheme 

becomes 1st-order accurate in time when the dynamic mesh is implemented. Therefore, 

instead of using 200 time steps per period of roll in NS2D, FLUENT is set to run with 

1000 time steps per period. Moreover, the p / n = 0  boundary condition on the wall in 

FLUENT will require a higher grid resolution to preserve the accuracy for predicting the 

corresponding forces and the moment. It becomes essential when the hull moves and/or 

when the free surface is present, where the hydrostatic pressure is proportional to the 

water depth. It also makes FLUENT jobs require much more computational power. Even 

with the ability to parallelize the job with several CPUs, it will be very difficult for 

FLUENT to run a fully 3D case with a sufficient grid resolution. More details of the 3D 

simulation using present numerical scheme will be discussed in Chapter 6. 

 

 NS2D FLUENT 

Free surface prediction Free-surface tracking algorithm VOF 

Time accuracy 2nd-order ( t/T=0.005) 1st-order ( t/T=0.001) 

Pressure boundary 

condition on the wall 
Linear extrapolation 

p / n = 0  

(FLUENT user manual) 

Computational time 
For N 10,000 

2hrs/period; single CPU 

For N 62,000 (22,000 in 

air; 40,000 in water) 

6hrs/period; 8 CPUs 

Table 5.2: Differences between NS2D and FLUENT5. 

 

                                                
5 The NS2D and FLUENT simulations are performed using a 16 nodes workstation with dual AMD 
Opteron 1.6 Hz CPUs, and 2GB memory per node. 
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5.1.2 Hull Geometries 

The four different hull geometries used in the following studies are shown in Fig. 

5.4. B represents the hull beam, and the beam/draft ratio is equal to 2. The box model is 

considered as a reference shape. The round bilge model has the same bilge radius, 0.02B, 

as the one used in Yeung et al. (1998). The bilge keel model is defined following (Yeung 

et al. 2000). The one with a keel length of 0.04B is used in the following studies, and it 

will be named 4% bilge keel model hereafter, unless mentioned otherwise. The last 

model is the "step model", whose geometry is the same as defined in Yuck et al. (2003).  

 

 

Figure 5.4: Four shapes of the hull: (1) Round bilge model; (2) Bilge keel model; (3) Box 
model; (4) Step model. 
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5.1.3 Sensitivity Analyses 

To validate the numerical results obtained from a ship-shaped hull undergoing a 

forced harmonic roll motion, the sensitivities of the grid resolution and the time step size 

are studied. The studies are performed using the round-bilge hull with a fixed roll angle 

amplitude of 0=5.75o. 

For the grid resolution analysis, the moment history from the highest resolution is 

used as the "exact" solution. The absolute error difference m between the "exact" solution 

and the moment history from another grid resolution is obtained using the least square 

method: 

m =
1

NT

(Mc Me )i
2

i=1

NT

,  (5.6) 

where NT is the number of time steps for the last two periods, Me indicates the "exact" 

moment history, Mc is the moment history from a coarser grid and the subscript "i" 

represents the data index at each time step. 

The definition of the boundary layer cell height  is explained in Fig. 5.5. Four 

different heights, =0.002B, 0.005B, 0.01B, and 0.02B, are used for the grid sensitivity 

analysis. The convergence rate for three different roll frequencies, Fn=0.4, 0.8 and 1.2, 

are presented in Fig. 5.6. Note that due to the stability constraint on the time step size for 

the free surface calculation, the time step size in the case of Fn=0.4 is equal to 

t/T=0.002, and t/T=0.005 is used in the cases of Fn=0.8 and Fn=1.2. The convergence 

rate is obtained using Eq. (5.6), and the result of =0.002B is used as the "exact" solution. 

The moment histories for different boundary-layer-cell heights are shown in Fig. 5.7, 

where the roll frequency fixed at Fn=0.8 and a roll angle amplitude is given as 0=5.75o. 
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The differences between the "exact" solution and the results from the coarser grids at 

every quarter period are relatively small as compared to the difference in the moment 

amplitude. The results suggest that the grid resolution may not have a significant impact 

on the hydrodynamic coefficients. However, the roll moment amplitude can be 

underestimated using a low-resolution mesh. According to the studies, a grid size of 

=0.005B is adequate and, therefore, will be used in subsequent studies. The same 

boundary layer cell height is also applied in the studies with different hull models. Only 

the number of the cells along the hull corner will be different due to the various hull 

corner geometries. 

The sensitivity of the resolution in time is analyzed with three different time step 

sizes, t/T=0.001, 0.002, and 0.005. The corresponding moment histories and the blowup 

view are plotted in Fig. 5.8. Note that due to the stability issue for calculating the free-

surface elevation, no time step size larger than 0.005T can be implemented. The results 

have shown that the differences among all three cases are found to be extremely small. 

Therefore, t/T=0.005 is proved to be adequate and will be used in the following studies, 

except for Fn=0.4 and Fn=0.6 cases, where t/T=0.002 will be used due to the same free-

surface stability constraints. 
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Figure 5.5: The definition of the boundary-layer cell height. 

 

Figure 5.6: Logarithmic plot of the absolute errors between the "exact" solution and the 
results from coarser grid resolutions (round bilge hull, 0=5.75o and Fn=0.4, 
0.8 and 1.2). 
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Figure 5.7: Comparison of the moment histories for different boundary layer cell heights 
and its blowup view (round bilge hull, 0=5.75o and Fn=0.8). 

 

 

 



72 

 

 

Figure 5.8: Comparison of the moment histories for different time step sizes and its 
blowup view (round bilge hull, 0=5.75o and Fn=0.8). 
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5.1.4 Correlation with Other Methods 

This subsection presents the comparison of the results from the NS2D solver and 

other methods for different hull geometries. As mentioned in subsection 5.1.2, four hull 

geometries are implemented in the studies, which include round bilge model, 4% bilge 

keel model, box model and step model. 

 

Round Bilge model 

In the case of the round bilge model, the results from the NS2D simulation are 

compared to those solved by using FLUENT or a BEM based potential flow solver 

(Vinayan et al. 2005) and to other experimental data. 

The potential flow solver is primarily used for validation purposes. The reason for 

comparing inviscid NS2D results to those from the potential flow solver is to validate the 

prediction of the non-linear free surface in the NS2D simulation. The BEM scheme is 

categorized into two types based on the applied boundary conditions on the free surface. 

MBLF represents Moving Body Linear Free-surface, and NL-BEM indicates that a fully 

non-linear free surface is applied along with the moving hull in the BEM solver. The 

results are produced at a fixed Froude number, Fn=1.0. Two roll amplitudes, 
  0

= 5.75  

and 
  0

= 11.5 , are used. Pressure and the velocity components on the hull from 

NS2D(IN) are compared to those from NL-BEM in Fig. 5.9 to Fig. 5.12. The 

comparisons of the results from these two solvers show great agreements. To further 

verify the application of the non-linear free-surface boundary conditions, the wave 

elevations from NS2D are compared to those from NL-BEM on both starboard and port 

sides of the hull. As shown in Fig. 5.13, the free-surface elevations from both solvers also 

agree well, which also proves that the numerical approach used for calculating the non-

linear free surface works successfully.  
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Figure 5.9: Comparison of pressure and velocity components between NS2D(IN) and 
NL-BEM (Vinayan et al. 2005) (round bilge hull, 0=5.75o, Fn=1.0 and 
t/T=2.75). 
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Figure 5.10: Comparison of pressure and velocity components between NS2D(IN) and 
NL-BEM (Vinayan et al. 2005) (round bilge hull, 0=5.75o, Fn=1.0 and 
t/T=3.00). 
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Figure 5.11: Comparison of pressure and velocity components between NS2D(IN) and 
NL-BEM (Vinayan et al. 2005) (round bilge hull, 0=11.5o, Fn=1.0 and 
t/T=2.75). 
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Figure 5.12: Comparison of pressure and velocity components between NS2D(IN) and 
NL-BEM (Vinayan et al. 2005) (round bilge hull, 0=11.5o, Fn=1.0 and 
t/T=3.00). 
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Figure 5.13: Comparison of the moment histories between NS2D and NL-BEM (Vinayan 
et al. 2005) results (round bilge hull, 0=5.75o, Fn=1.0 and t/T=2.45). 

 

Figure 5.14 presents the moment histories from NS2D(IN) and the viscous 

version of the Navier-Stokes solver, NS2D(VS). As expected, the moment history 

predicted from NS2D(VS) is higher in amplitude and a phase shift is found between the 

viscous and inviscid results. It is due to the boundary layer effect, where the vorticity is 

generated, especially near the bilge area (as will be shown in the later section). As shown 

in Fig. 5.15, those vortices result in a modified pressure distributions on the hull close to 

the bilge area. All the studies in the following subsections are performed in viscous flow, 
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where "NS2D" will represent the viscous version of the present method, unless 

mentioned otherwise. 

 

 

Figure 5.14: Comparison between the moment histories from NS2D(IN) and NS2D(VS). 
(round bilge hull, 0=5.75o, Fn=0.6). 
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Figure 5.15: Comparison of the pressure distribution along the FPSO hull between results 
from NS2D(IN) and NS2D(VS) (round bilge hull, 0=5.75o, Fn=1.0 and 
t/T=3.00). 

 

The meshes used in NS2D and FLUENT are presented in Fig. 5.16 and Fig. 5.17, 

respectively. For the round bilge model, The total number of cells used in NS2D is 

around 10,000, and the FLUENT mesh has a total number of 62,000 cells consisting of 

22,000 cells in air and 40,000 cells in water. In FLUENT, the VOF algorithm is 

implemented to predict the free surface, which increases the total number of cells 

significantly. Moreover, based on the numerical experience, a much higher resolution is 

needed near the hull in order to capture the boundary layer vorticity. Therefore, a grid 

refinement zone is applied to the area near the hull and close to the free surface, where a 
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quadrilateral cell is divided into four cells and hanging nodes are allowed at the boundary 

of the grid refinement zone.  

The free-surface elevations from both solvers are presented in Fig. 5.18, where 

the roll frequency is fixed at Fn=0.8 and the roll amplitude is given as o=5.75o. The 

background contour represents the volume fraction of water from FLUENT, where the 

three contour levels are 0.45, 0.50, and 0.55, and the level of 0.5 represents the free-

surface elevation. Note that in FLUENT, as mentioned earlier, a small numerical 

reflection is observed at the grid zone interface, which is very difficult to avoid. The 

assumption here is that the grid zone interface is far enough and the numerical reflection 

is small enough to be neglected. For the same case, the corresponding roll moment 

histories are shown Fig. 5.19. Note that the moment history presented in this chapter 

indicates the hydrodynamic roll moment, unless mentioned otherwise. Figures 5.20 to 

5.22 present the vorticity magnitude contours from NS2D, FLUENT(L) and FLUENT(T) 

respectively. Note that in FLUENT(T), the k-  turbulent model is applied, where the y-

plus for the corresponding mesh is around 10. A good correlation has been found 

between the results from NS2D and FLUENT, where the slight difference on the vorticity 

magnitude is due to grid resolution. Also, the turbulent flow effect is found to be 

insignificant in the case of a round bilge hull. The dash-dotted line represents the moment 

history obtained using Eq. (5.3), where the hydrodynamic coefficients are extracted from 

the NS2D roll moment history in the same figure by following Eq. (5.4). It has been 

found that using added-mass and damping coefficients to represent a periodic force or 

moment histories can be inadequate, particularly for the hulls subject to roll motions. In 

fact, two moment histories with a 15% difference on the amplitude can have same 

hydrodynamic coefficients, and a slight phase shift between two moment histories can 
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result in a significant difference on the corresponding coefficients even with same roll 

moment amplitude.  

 

 

 

Figure 5.16: Mesh used in NS2D (N 10,000 ) and the blowup view at the bilge area. 
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Figure 5.17: Mesh used in FLUENT (  N 62,000,  air/water 22,000/40,000 )and the 
blowup view at the bilge area. 
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Figure 5.18: Comparison between the wave elevations from NS2D and the volume 
fraction of water (background contour) from FLUENT(L) at three levels, 
0.45, 0.50 and 0.55 (round bilge hull, 0=5.75o, Fn=0.8 and t/T=5.00). 

 

Figure 5.19: Comparison of the moment histories from NS2D, FLUENT(L), FLUENT(T) 
(round bilge hull, 0=5.75o, Fn=0.8 and t/T=5.00). 
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Figure 5.20: Vorticity magnitude contour From NS2D (round bilge hull, 0=5.75o, 
Fn=0.8 and t/T=3.00). 

 

Figure 5.21: Vorticity magnitude contour From FLUENT(L) (round bilge hull, 0=5.75o, 
Fn=0.8 and t/T=3.00). 
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Figure 5.22: Vorticity magnitude contour From FLUENT(T) (round bilge hull, 0=5.75o, 
Fn=0.8 and t/T=3.00). 

The NS2D results are also compared to the numerical results from FSRVM and 

the experimental measurements provided by Yeung et al. (1998) and Roddier (2000)6. 

Figures 5.23 and 5.24 show the comparison of the moment histories from NS2D and from 

other methods. The moment history from NS2D agrees well with the numerical and 

experimental results from Roddier (2000). In fact, the results from NS2D are closer to 

Roddier’s (2000) experimental data as compared to his own numerical results. As 

mentioned earlier, it may not be adequate to use added-mass and damping coefficients to 

represent the moment history. However, in order to compare with other methods, the 

corresponding added-mass and damping coefficients from NS2D(IN), NS2D(VS), 

FLUENT(L), FLUENT(T) and all other methods are all presented in Fig. 5.25 and Fig. 

                                                
6 Note that the experimental uncertainty is not mentioned in their study. 
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5.26. The NS2D results also agree fairly well with those from other methods except for 

low Froude number cases, where slight differences are observed. As expected, the 

inviscid results are high in added-mass coefficients and low in damping coefficients. 

When the roll frequency is lower, a longer wavelength is created. Therefore, it is much 

more difficult for either NS2D or FLUENT to simulate those cases because a much larger 

numerical domain is required in order to avoid the wave reflection from the far 

boundaries. In terms of added-mass coefficients, FLUENT results are slight closer to the 

experimental data as compared to the NS2D results for Fn=0.4 and Fn=0.6. As to the 

damping coefficients, it is the results from NS2D that show better agreement with the 

experimental data than those from FLUENT. 
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Figure 5.23: Moment histories from NS2D and other methods (round bilge hull, 0=5.75o, 
Fn=0.8 and - 2sin(  t) represents the angular acceleration). 

 

Figure 5.24: Moment histories from NS2D and other methods (round bilge hull, 0=5.75o, 
Fn=1.0 and - 2sin(  t) represents the angular acceleration). 
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Figure 5.25: Added-mass coefficients from NS2D, FLUENT, and other methods (round 
bilge hull and 0=5.75o). 

 

Figure 5.26: Damping coefficients from NS2D, FLUENT, and other methods (round 
bilge hull and 0=5.75o). 
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4% Bilge Keel Model, Box Model and Step Model  

The following discussions present the comparisons of the simulations for 4% 

bilge keel model, box model and step model from NS2D and other methods. 

 

 

Figure 5.27: Comparison between the wave elevations from NS2D and the volume 
fraction of water (background contour) from FLUENT(L) at three levels, 
0.45, 0.50 and 0.55 (4% bilge keel hull, 0=2.87o, Fn=0.8 and t/T=6.00). 

In the case of the 4% bilge keel model, the simulations are performed with a given 

roll angle amplitude, o=2.87o. The comparison between the free-surface elevations from 

NS2D and FLUENT(L) is presented in Fig. 5.27, and the results from these two solvers 

agree well. The vorticity magnitude contours for Fn=0.8 from NS2D, FLUENT(L) and 

FLUENT(T) are presented in Fig. 5.28 to Fig. 5.30, respectively. Moreover, the moment 

histories from these three solvers for Fn=0.6 and Fn=0.8 are shown in Fig. 5.31 and Fig. 

5.32. The simulations from NS2D, FLUENT(L) and FLUENT(T) show similar flow 
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visualization near the bilge keel area. For flows away from the hull, the FLUENT(T) 

simulation has the strongest dissipation, where the shed vortices are dissipated faster as 

compared to the other two simulations. In fact, these shed vortices have very little impact 

on the pressure distribution on the hull surface. As a result, the moment histories from 

these simulations show fairly good agreement. The dash-dotted line in Fig. 5.31 and Fig. 

5.32 represents the moment history obtained using the linear combination of a66 and b66, 

which are extracted from the NS2D roll moment history in the same figure. The 

difference between the dash-dotted line and the moment history from NS2D shows that 

even with a small roll angle amplitude ( o=2.87o), the non-linear effects are still 

observed, particularly for hulls with sharp corners. Also notice that the FLUENT mesh in 

this case uses the grid refinement, which gives a much higher grid resolution in the area 

close to the hull. It also explains the reason why the predictions of the shed vortices from 

NS2D are different from the FLUENT(L) results. It has also been found that the effect of 

turbulence has very little impact on the prediction of hydrodynamic loads on the hull in 

the case of ship-shaped hull roll motions. Therefore, no turbulent model is applied in 

NS2D, and all the following studies are performed in laminar flow. 
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Figure 5.28: Vorticity magnitude contour From NS2D (4% bilge keel hull, 0=2.87o, 
Fn=0.8 and t/T=3.00). 

 

Figure 5.29: Vorticity magnitude contour from FLUENT(L) (4% bilge keel hull, 
0=2.87o, Fn=0.8 and t/T=3.00). 
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Figure 5.30: Vorticity magnitude contour from FLUENT(T) (4% bilge keel hull, 
0=2.87o, Fn=0.8 and t/T=3.00). 

 

Figure 5.31: Moment histories for Fn=0.6 from NS2D, FLUENT(L), and FLUENT(T) 
(4% bilge keel hull, Fn=0.8 and 0=2.87o). 
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Figure 5.32: Moment histories for Fn=0.8 from NS2D, FLUENT(L) and FLUENT(T) 
(4% bilge keel hull and 0=2.87o). 

The NS2D results for the 4% bilge keel model are also compared to those from 

other numerical methods (FSRVM and BFFDM) and to the experiment data provided by 

Yeung et al. (2000), where the hull geometry in NS2D is exactly the same as the one used 

in Yeung et al.’s (2000) numerical simulation. Figure 5.33 shows the corresponding 

moment histories for 0=2.87o and Fn=0.8. According to Yeung et al. (2000), the 

numerical and experimental data presented in the figure are the hydrodynamic moments. 

It has been found that in order to be consistent with the hydrodynamic coefficients, as 

shown in Fig. 5.34 and Fig. 5.35, it is more reasonable to believe that the data in Fig. 5.33 

from Yeung et al. (2000) represent the total moment histories. The moment history from 

the NS2D simulation compares fairly well with those from other methods. However, the 

prediction of hydrodynamic coefficients from NS2D and FLUENT tend to be higher than 

those from Yeung et al. (2000), particularly for damping coefficients, and unfortunately, 
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their article is the only literature that provides a complete study for hulls with sharp bilge 

keel subject to prescribed rolls. On the other hand, the comparisons between NS2D and 

FLUENT show good agreement for all cases except for Fn=0.6, where the prediction of 

the added-mass coefficient from NS2D is much higher than the one from FLUENT. It is 

interesting that even though the moment histories for Fn=0.6 from NS2D and FLUENT 

show good agreement, particularly in terms of roll moment amplitude, as plotted in Fig. 

5.31, the corresponding added-mass coefficients can have a significant difference. It has 

been found that, it is more difficult for numerical solvers to perform studies on low roll 

frequencies. The simulation for low roll frequencies requires a larger computational 

domain due to the longer outgoing wavelength. Moreover, because the wave elevation is 

smaller for low roll frequencies, a higher grid resolution is needed near the free surface in 

order for NS2D or FLUENT to maintain the accuracy for tracking or capturing the free 

surface.  

 

Figure 5.33: Histories of total moment from NS2D and other methods (Fn=0.8 and 
0=2.87o). 
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Figure 5.34: Added-mass coefficients from NS2D, FLUENT, and other methods (4% 
bilge keel hull and 0=2.87o). 

 

Figure 5.35: Damping coefficients from NS2D, FLUENT, and other methods (4% bilge 
keel hull and 0=2.87o). 
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In the following studies, NS2D is applied to two other hull geometries, the box 

and step models, where NS2D results are compared to those experimental data measured 

by Yuck et al. (2003). According to the definition of the bilge keel length, the geometry 

of a box hull is very similar to the one of 1% bilge keel, and the length of the "step" in a 

step model is very close to the length of a 4% bilge keel. The damping coefficients for the 

box and step models with a roll amplitude of o=5o are presented in Fig. 5.36 and Fig. 

5.37, respectively. As shown in the figure, the results from NS2D compare extremely 

well to the experimental data provided by Yuck et al. (2003). Thus, it proves that the 

NS2D simulation is reliable for predicting the corresponding hydrodynamic loads on 

hulls with sharp corners. 

 

 

Figure 5.36: Damping coefficients for the box model with o=5.0o. 
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Figure 5.37: Damping coefficients for the step model o=5.0o. 

 

5.1.5 The Effect of The Free Surface 

It is essential to observe the effects of the free surface, which are studied by 

comparing the results from a submerged hull to those from a ship-shaped hull. In the 

study, a fixed roll angle amplitude is give at o=5.75o. Figure 5.38 shows the comparison 

of the free-surface elevation of two extreme cases, Fn=0.4 and Fn=1.2. As expected, a 

higher roll frequency creates a higher acceleration, which results in a larger wave. 

Figures 5.39 and 5.40 compare the moment histories from a submerged hull and a ship-

shaped hull for Fn=0.4 and Fn=1.2, respectively. Note that the round bilge model is used 

in the studies, and the moment history from the submerged hull needs to be divided by 2 



99 

in order to have the same hull length as compared to a ship-shaped hull. In the case of a 

submerged hull, the study for different roll frequencies becomes the study of the viscous 

effect, and it is negligible in this case. On the other hand, with the presence of the free 

surface, the moment amplitude increases as the roll frequency decreases. It is 

understandable that when the hull rotates, flow near the hull moves along with the body. 

Nevertheless, with the presence of the free surface, the flow movement is limited in the 

hull-rotating direction, and the hull motion induces a wave on each side of the hull, which 

propagates from the hull toward the far boundary. In the case of a higher roll frequency, 

the wave amplitude is larger, which carries more energy away from the hull, and results 

in a larger phase shift on the moment history. Conversely, more energy is constrained in 

the case of a lower roll frequency, which results in a greater amplitude in roll moment. 

 

 

Figure 5.38: Free-surface elevations in the case of Fn=0.4 and Fn=1.2 ( o=5.75o). 



100 

 

Figure 5.39: Comparison between the moment histories for a ship-shaped hull and a 
submerged hull (round bilge hull, Fn=0.4 and o=5.75o). 

 

Figure 5.40: Comparison between the moment histories for a ship-shaped hull and a 
submerged hull (round bilge hull, Fn=1.2 and o=5.75o). 
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5.1.6 The Effect of Roll Angle Amplitude 

The maximum roll angle that the present numerical scheme can handle is up to 20 

degrees. Therefore, in the following studies, the maximum roll angle is set to 0=20o, 

along with three other roll angles, 0=5o, 10o and 15o. The moment histories for the round 

bilge model with different roll amplitudes are shown in Fig. 5.41. The curve of the scaled 

roll motion / 0 is presented as a reference. Fn is equal to 1, and the moment histories 

are scaled by 0=5o. The non-linear behavior of the moment histories can be found when 

the roll angle is beyond 10 degrees, where the viscous effect is more significant. 

 

 

Figure 5.41 Total moment histories of round bilge model for different roll angles (scaled 
by o=5o). 
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Figure 5.42: Roll added-mass coefficients for the round bilge model ( 0=5o, 10o, 15o, 
20o). 

 

Figure 5.43: Roll damping coefficients for the round bilge model ( 0=5o, 10o, 15o, 20o). 
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The added-mass and damping coefficients for different Fn are presented in Fig. 

5.42 and Fig. 5.43 respectively. The moment amplitude is about the same for different 0, 

but a phase shift is found and becomes larger under higher 0. It is due to the presence of 

the viscosity, and those vortices near the bilge are stronger when 0 is larger. This phase 

shift results in a decrease on a66 and an increase on b66. Note that a similar trend was also 

found by Vugts (1968). 

 

5.1.7 The Effect of Hull Geometry 

Flow visualization and the corresponding forces for four above-mentioned hull 

geometries are studied with a roll amplitude of o=5.75o. The moment histories for 

different hull geometries in the case of Fn=1 are plotted in Fig. 5.44. The added-mass and 

damping coefficients for various Fn are shown in Fig. 5.45 and Fig. 5.46 respectively. 

The vorticity contours for Fn=1.0 are shown in Fig. 5.47. The simulations from different 

hull models show different flow patterns near the hull, where the shed vortices location and 

strength are affected by the hull geometries. In fact, the location and strength of the vortices 

near the hull also affect the pressure distribution near the hull and more importantly, on the 

hull surface. The pressure distributions along the hull surface for Fn=0.8 in the case of 

these four hull geometries are shown in Fig. 5.48 to Fig. 5.51, respectively. From the flow 

visualization, the vortices are larger and stronger near the bilge area when the bilge keels are 

installed. As a result, in the case of the 4% bilge keel model, there is a significant increase in 

the amplitude of the moment history and a sizable phase shift on the results from other 

models. A non-linear behavior can be observed in the moment histories at every 0.4T and 

0.9T, especially for the 4% bilge keel model, which is due to the strong flow separation 

created by the bilge keel. 
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 The effect of the bilge keel length is studied by giving four different lengths, 

0%B (round bilge hull with a 0.02B bilge radius), 2%B, 4%B and 6%B. The resulting 

added-mass and damping coefficients, with a roll amplitude of o=2.87o, are presented in 

Fig. 5.52 and Fig. 5.53. The effects of the keel length on the hydrodynamic coefficients 

are similar to what has been found in Yeung et al. (2000). Both hydrodynamic 

coefficients increase as the bilge keel length increases. However, in our simulation, a 

larger difference is observed between the damping coefficients of 4% and 6% bilge keels 

when compared to Yeung et al. (2000).  

 

 

Figure 5.44: Total moment histories for different hull geometries (Fn=1.0 and o=5.75o). 
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Figure 5.45: Roll added-mass coefficients for different hull geometries. 

 

Figure 5.46: Roll damping coefficients for different hull geometries. 
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(b) Box Model 

(a) Round bilge 
Model 
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Figure 5.47: Vorticity contours (t/T=5.75, Fn=1.0 and o=5.75o), (a) round bilge model, 
(b) box model, (c) step model, (d) 4% bilge keel model. 

(d) 4% Bilge keel 
Model 

(c) Step Model 



108 

 

Figure 5.48: Pressure distributions on the hull (round bilge model, Fn=0.8 and o=5.75o). 

 

Figure 5.49: Pressure distributions on the hull (box model, Fn=0.8 and o=5.75o). 
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Figure 5.50: Pressure distributions on the hull (step model, Fn=0.8 and o=5.75o). 

 

Figure 5.51: Pressure distributions on the hull (4% bilge keel model, Fn=0.8 and 

o=5.75o). 
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Figure 5.52: Roll added-mass coefficients for different bilge keel lengths ( o=2.87o). 

 

Figure 5.53: Roll damping coefficients for different bilge keel lengths ( o=2.87o). 
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Comparing to the bilge keel model ( =45o) in subsection 5.1.2, the horizontal and 

vertical bilge keels are plotted in Fig. 5.54. The added mass and damping coefficients for 

different Froude numbers with horizontal or vertical bilge keels are shown in Fig. 5.55. 

The difference between the added mass coefficients of these two cases is extremely 

small. On the other hand, the damping coefficients are slightly higher in the case of 

horizontal bilge keels when the Froude number is small. Although the bilge keel 

geometry is not exactly the same as those in Na et al. (2002), and Seah and Yeung 

(2003), a similar variation in the hydrodynamic coefficients is observed. The added-mass 

coefficients from both cases are almost the same as expected because both cases have the 

same hull displacement. On the other hand, the corresponding damping coefficients are 

slightly higher when the horizontal bilge keels are used. As explained in Seah and Yeung 

(2003), when the horizontal bilge keels are used, the shed vortices are located closer to 

the free surface. It affects the wave profile near the hull, and thus carries more energy 

away from the hull. As a result, the horizontal bilge keel creates a larger damping 

coefficient as compared to the vertical one. Moreover, the viscous effects become weaker 

when the Froude number increases. Therefore, the deviation in the damping coefficients 

between the two cases is negligible when the Froude number becomes larger. 
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Figure 5.54: The geometries for different types of bilge keels. 

 

 

Figure 5.55: Roll added-mass and damping coefficients for horizontal and vertical bilge 
keels ( o=2.87o). 
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5.2 DECAY MOTIONS 

This section describes the background of the free-decay motions and the 

calculations of the motion response. The results of the heave decay motion from the 

NS2D simulation are compared to those from other methods. Also presented in this 

section are the results of roll decay motions for different hull geometries and various 

initial roll angles. 

 

5.2.1 Background 

The horizontal sway motion is constrained in the present decay motion problem, 

and the angular acceleration and the vertical acceleration 
 
yb  are calculated based on the 

Newton’s second law for the equilibrium: 

 

Fy mbg = mb (yb yg
2 ),

Mo mbgxg = IO + mbxgyb ,
 (5.7) 

where Io is the mass-moment of inertia about the center of rotation,   stands for the 

angular velocity, mb is the mass of the body, xg and yg represent horizontal and vertical 

components of  OG  and yb indicates the vertical hull movement. In order to simplify the 

studies, the decay tests are carried out individually by allowing only a single degree of 

freedom, i.e. either heave or roll. Therefore, the equations of motions can be further 

modified, where the angular velocity term in the heave motion and the vertical 

acceleration term in the roll motion are dropped out from the equations of motions, which 

are given as: 
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Fy mbg = mbyb ,

Mo mbgxg = IO .
 (5.8) 

Note that by using Eq. (5.1), the forces and moments on the hull are evaluated by 

integrating the pressures on the wetted portion of the body surface. The corresponding 

vertical hull movement and roll angle are calculated using a time marching scheme 

similar to the one used for solving the Navier-Stokes equations. 

According to Roddier (2000), the center of gravity is located 0.144B below the 

origin O, as shown in Fig. 5.56, and the radius gyration about O is equal to 0.394B. 

Figure 5.57 illustrates the heave or roll decay motion of a hull and its mean position. All 

the variables are made non-dimensional with respect to the hull beam and B / g , and 

the corresponding Reynolds number is equal to 5.27 105. 

 

 

Figure 5.56: Center of gravity in roll decay. 
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Figure 5.57: The heave or decay motion of a hull and its mean position. 
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Based on the dynamic theory and the assumption that the motion is damped 

linearly, the nominal roll period TD is equal to  

T
D
= 2

I
o
+ a

66

g H
GM

,  (5.9) 

where HGM denotes the roll metacentric height. Note that the roll decay response in the 

present study is calculated following Eq. (5.7) and it is coupled in the numerical 

simulation. Eq. (5.9) is given as a reference to explain the relation between roll decay 

period and the added-mass coefficient. 

 

5.2.2 Results 

In the heave decay problem, an initial displacement at t = 0  is given as 

  
y

0
= 0.125B . Figure 5.58 plots the heave motion responses predicted from NS2D, and 

from the experimental measurements and the numerical modeling of Roddier (2000). The 

NS2D result agrees well with those from Roddier (2000). Figure 5.59 shows the 

logarithmic difference of successive peaks in the heave decay motion. Theoretically, it 

should be a constant versus time by following an exponential law. The logarithmic 

difference of successive peaks has been recovered perfectly using present numerical 

scheme, NS2D(IN) and NS2D(VS), and the BEM based potential flow solver, NL-BEM. 

In fact, the numerical prediction from the present scheme has shown a better agreement 

with the experimental data from Roddier (2000) as compared to his numerical solutions. 

In the roll decay problem, an initial roll angle at t = 0  is specified. The hull 

geometry is exactly the same as those used in the prescribed roll problem. Figure 5.60 

shows the roll angle response for different hull geometries with initial displacement of 
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0=14.32o, and the inviscid flow result for the round bilge model is also presented in the 

figure. The roll response decreases faster in viscous flow in comparison to inviscid flow, 

but the roll decay periods are found to be about the same. The responses for different 

initial displacements of roll angle ( 0=10o, 14.32o, 20o) are presented in Fig. 5.61. The 

vorticity contours for all the analyzed hull geometries and their hull position are shown in 

Fig. 5.62 to Fig. 5.65, where the top figures illustrate the initial solution, and the bottom 

figures show the result at the end of first roll decay period. Note that the roll decay 

frequency varies with different hull geometries. Therefore, those bottom figures in Fig. 

5.62 to Fig. 5.65 are plotted at different time. It has been found that the 4% bilge keel 

model is the most effective model in terms of damping the roll motion, where the roll 

response amplitude of the 4% bilge keel model decays faster than those of all the other 

analyzed geometries. Also, it has the longest roll decay period. On the other hand, the 

round bilge model is the least efficient as expected. In the study of different initial roll 

angles, larger initial roll angle tends to have a higher decay rate in terms of scaled roll 

response amplitude but a shorter roll decay period. This can be explained by using the 

corresponding hydrodynamic coefficients found in the prescribed roll motion problem. 

The amplitude of the normalized roll angle decays faster when the damping coefficient is 

higher. By following Eq. (5.9), the roll decay period is proportional to the square root of 

Io+a66. Therefore, the period increases when the added-mass coefficient becomes larger.  
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Figure 5.58: Heave motions responses from NS2D and other methods (round bilge hull 
and yo=0.125B). 

 

Figure 5.59: Logarithmic decay of the heave motions from NS2D and other methods 
(round bilge hull and yo=0.125B). 
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Figure 5.60: Roll response for different hull geometries ( 0=14.32o). 

 

Figure 5.61: Roll response for different initial roll displacements (round bilge hull). 
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Figure 5.62: Vorticity contours and the corresponding hull positions for round bilge 

model at t* = t / B / g = 0  and t* = t / B / g = 12  ( 0=14.32o). 
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Figure 5.63: Vorticity contours and the corresponding hull positions for box model at 

t* = t / B / g = 0  and t* = t / B / g = 13  ( 0=14.32o). 
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Figure 5.64: Vorticity contours and the corresponding hull positions for step model at 

t* = t / B / g = 0  and t* = t / B / g = 14  ( 0=14.32o). 
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Figure 5.65: Vorticity contours and the corresponding hull positions for 4% bilge keel 

model at t* = t / B / g = 0  and t* = t / B / g = 15  ( 0=14.32o). 
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5.3 SUMMARY 

A two-dimensional Navier-Stokes based solver has been applied to model the 

separated flow for different hull geometries subject to prescribed roll motions or in free-

decay motions. Sensitivity analyses in space and in time were performed, and the results 

for various hull geometries from the present numerical scheme compare well with those 

from FLUENT and other methods. The effect of turbulence is found to be very small in 

the ship-shaped hull roll motion problem. The current model can handle roll angles up to 

20 degrees. The non-linear effects were observed in small as well as large amplitudes of 

roll, which make using a linear combination of added-mass and damping coefficients to 

represent the corresponding hydrodynamic loads inadequate. Therefore, the calculation of 

the hull response in the time domain becomes inevitable. Among all the analyzed 

geometries, the bilge keel model (at least longer than 4%B) was found to be the most 

effective model for mitigating roll motions, and to have the lowest roll damping 

frequency. 

The present numerical scheme has been successfully applied to several 2D ship-

shaped hull roll motion problems, and the results agree well with other methods. Thus, 

the present 2D solver is extended into three dimensions, and it will be applied to 3D 

problems in the next chapter. 
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Chapter 6: Three-Dimensional Results 

The verification and the validation of the three-dimensional Navier-Stokes 

(NS3D) solver are discussed in this chapter. The NS3D solver is applied in this chapter to 

the piston type wave-maker problem and the prescribed roll motion problems of a 

uniform or a non-uniform cross-section cylindrical hull. In the first two cases, the results 

from NS3D are validated with those from NS2D. In the last case, the NS3D results are 

compared to those from the 2D approach using strip theory. 

 

6.1 PISTON TYPE WAVE-MAKER 

The inviscid version of the NS3D solver is applied to the 3D piston type wave-

maker problem, which is extended from the 2D wave-maker problem described in section 

4.4. The computational domain and the corresponding domain boundaries are shown in 

Fig. 6.1. In this study, the grid and domain configurations in x-y plane are identical to the 

2D case. The wave channel is hd wide and has a uniform cross-section. Five strips of 

hexahedral cells are used, which give a total number of 32,000 cells for the entire 3D 

computational domain. Two additional slip-wall boundaries are used as the sidewalls and 

are placed at z=0 and z=hd. All the variables are made non-dimensional with exactly the 

same parameters used in 2D case. Therefore, the piston wave-maker also moves 

periodically with a frequency of 
  
( / 2) g / h

d
, a wave height of A=0.05hd, and a time 

step size of 
  

t / h
d

/ g = 0.1. Figure 6.2 shows three slices of the pressure contours for 

x-y plane, and each pressure contour is identical to the other. The 3D free-surface 

elevation is presented in Fig. 6.3. Figure 6.4 shows the comparison of the free-surface 

elevation among the results from NS2D and NS3D, and the one predicted by Lin (1984). 

As expected, the 3D free-surface elevation is identical to the one solved in the 2D case. 
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The results show that the NS3D solver is well validated in this case, and a study on the 

prescribed roll motion of a 3D hull with a uniform hull cross-section will be presented in 

the next section. 

 

 

Figure 6.1: Computational domain and corresponding domain boundaries of a 3D piston 
type wave-maker problem. 
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Figure 6.2: Three slices of the pressure contours for x-y plane at 
  
t / h

d
/ g = 20 . 

 

 

Figure 6.3: 3D free-surface elevation at (a) 
  
t / h

d
/ g = 5.0 , (b) 

  
t / h

d
/ g = 10.0 , (c) 

  
t / h

d
/ g = 15.0  and (d) 

  
t / h

d
/ g = 20.0 . 

(a) 
 

(b) 
 

(c) 
 

(d) 
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Figure 6.4: Free-surface elevation from NS3D, NS2D and Lin (1984) at 

t / h
d
/ g = 19.1 . 
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6.2 PRESCRIBED ROLL OF A SHIP-SHAPED HULL WITH A UNIFORM HULL CROSS-
SECTION 

In this section, the NS3D solver is applied to a 3D prescribed roll motion 

problem, which is extended from the 2D case described in section 5.1, and all the 

variables are also made non-dimensional with exactly the same parameters as used in the 

2D case. As shown in Fig. 6.5, the numerical simulation is performed in a uniform 

channel with a domain size of 40B (20B on each side of the hull) long, 3B wide and 

6.67B deep, and the ship-shaped hull also has a uniform cross-section, which is identical 

to the round bilge hull geometry as used in the 2D case. The 3D mesh is shown in Fig. 

6.6. It contains six strips of hexahedral cells and a total number of 34,224 cells for the 

entire 3D computational domain.  

The ship-shaped hull is forced to roll at a fixed Frounde number, Fn=0.8, and the 

roll amplitude is equal to 5.75 degrees. The vorticity contour and the vorticity iso-surface 

at t/T=6.00 are presented in Fig. 6.7. Three slices of pressure contours for x-y plane at 

t/T=6.00 are shown in Fig. 6.8. The results clearly show two-dimensionality in the 

longitudinal direction of the hull (z-direction). Moreover, the pressure distribution along 

the hull predicted by using NS3D is compared to the solution of the 2D case at t/T=5.75 

and 6.00. As shown in Fig. 6.9, the 3D results are identical to those solved in two 

dimensions.  
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Figure 6.5: Computational domain and corresponding domain boundaries of a 3D 
prescribed roll motion problem in a uniform channel with a uniform hull 
cross-section. 

 

Figure 6.6: Mesh of the 3D prescribed roll motion problem in a uniform channel with a 
uniform hull cross-section. 
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Figure 6.7: The vorticity contour and the vorticity iso-surface of the 3D prescribed roll 
motion problem in a uniform channel with a uniform hull cross-section. 

 

Figure 6.8: Slices of pressure contours for x-y plane in the case of the 3D prescribed roll 
motion problem in a uniform channel with a uniform hull cross-section. 
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Figure 6.9: Comparison between the pressure distribution from NS2D and NS3D. 
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6.3 PRESCRIBED ROLL OF A SHIP-SHAPED HULL WITH A NON-UNIFORM HULL 
CROSS-SECTION 

The application of the NS2D solver to the prescribed roll motion of a ship-shaped 

hull with a non-uniform hull cross-section is conducted in this section. The roll angle 

amplitude of the prescribed roll motion is equal to 5.75 degrees As shown in Fig. 6.10, a 

non-uniform cross-section cylindrical hull is placed in a uniform channel with a domain 

size of 40B (20B on each side of the hull) long, 4B wide and 6.67B deep. The bottom 

figure in Fig. 6.10 shows a blowup view of the cylindrical hull, where the symbol B 

stands for the hull beam at z=0, and the beam length at z=4B for the non-uniform hull 

cross-section is equal to 0.8B. The hull cross-section is diminishing in the z-direction, but 

the bilge radius is kept the same, which is equal to 0.02B. The boundary conditions are 

the same as those applied in the uniform cross-section cylindrical hull problem, except 

that the sidewall boundaries are replaced by a symmetry boundary at z=0 and a no-slip 

boundary condition at z=4B. The computational domain contains eight strips of 

hexahedral cells and a total number of 45,632 cells. 

As shown in Fig. 6.11, the vorticity contour and the vorticity iso-surface are 

plotted at t/T=5.00, and the figure shows that the size of the vortices is changing in the z-

direction due to the non-uniform cross-section cylindrical hull geometry. Three slices of 

pressure contours for x-y plane located at z/B=0, z/B=2 and z/B=4 are plotted in Fig.6.12, 

and the 3D pressure contours for Fn=0.8 and Fn=1.2 are presented in Fig. 6.13 and Fig. 

6.14, respectively. The three-dimensionality can clearly be observed in Fig. 6.11 to Fig. 

6.14. Moreover, for two given roll frequencies, Fn=0.8 and Fn=1.2, the comparisons 

between the results from the NS3D solver and those from the 2D approach using strip 

theory are shown in Fig. 6.15 and Fig. 6.16, respectively. In this study, the domain is 

divided into five strips in the z-direction when implementing strip theory, and each strip 
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is simulated using the NS2D solver with a different hull cross-section. The corresponding 

moment from each strip is integrated along the z-direction. The results from NS3D show 

good agreement with those from the 2D approach using strip theory. Moreover, a slight 

deviation found near the peak of the roll moment indicates the need of a fully three-

dimensional solver to accurately predict the wave-hull interaction. Note that, the study is 

limited in the grid resolution, particularly in the z-direction due to the limitation of the 

computational resources. Nevertheless, the results show the capability of the NS3D 

solver for applying to fully 3D ship motion problems. 
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Figure 6.10: Computational domain and corresponding domain boundaries of a 3D 
prescribed roll motion problem in a uniform channel with a non-uniform 
hull cross-section, and a blowup view of the hull. 
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Figure 6.11: The vorticity contour and the vorticity iso-surface of the 3D prescribed roll 
motion problem in a uniform channel with a non-uniform hull cross-section. 

 

Figure 6.12: Slices of pressure contours for x-y plane in the case of the 3D prescribed roll 
motion problem in a uniform channel with a non-uniform hull cross-section. 
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Figure 6.13: Pressure contours for the 3D prescribed roll motion problem in a uniform 
channel with a non-uniform hull cross-section (Fn=0.8). 

 

Figure 6.14: Pressure contours for the 3D prescribed roll motion problem in a uniform 
channel with a non-uniform hull cross-section (Fn=1.2). 
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Figure 6.15: Moment histories for non-uniform cross-section cylindrical hull (round bilge 
model, Fn=0.8 and 0=5.75o). 

 

Figure 6.16: Moment histories for non-uniform cross-section cylindrical hull (round bilge 
model, Fn=1.2 and 0=5.75o). 
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6.4 SUMMARY 

The application of the NS3D solver to the wave-maker problem and the 

prescribed roll motion problems with a uniform or non-uniform cross-section hull are 

presented in this section. The NS3D results are verified fully with those from NS2D in 

the wave-maker problem and in the prescribed roll motion problem with a uniform hull 

cross-section, and with those from the 2D strip-wise approximation in the non-uniform 

cylindrical hull case. The results have proved that the full-scale application of the NS3D 

solver for 3D ship motion problems is feasible. However, a further improvement on the 

solver for parallel computing is needed in order to perform studies on more complex hull 

geometries. 
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Chapter 7: Conclusions and Recommendations 

7.1 CONCLUSIONS 

An unsteady Navier-Stokes solver has been developed, and was applied to predict 

the flow around ship-shaped hull sections and the corresponding hydrodynamic loads 

with an emphasis on roll. A step-by-step approach was followed towards this goal by 

initially performing NS2D simulations for submerged bodies subject to an oscillating 

inflow (vertical plate and fixed submerged hulls) and for a 2D piston type wave-maker. 

As an extension of these studies, the NS2D solver was modified and applied to hull 

motion simulations, where different hull geometries were subject to prescribed roll 

motions (with or without the presence of the free surface) or in free-decay motions. 

Based on the 2D algorithm, the solver has also been successfully extended into three 

dimensions (NS3D) and validated in multiple cases. The main contributions of the 

research are: 

• Development of an effective method to simulate hull motions and to predict the 

corresponding hydrodynamic loads: A two-dimensional FVM based numerical 

scheme (NS2D) has been developed. The method solves the unsteady laminar 

Navier-Stokes equations and applies fully non-linear boundary conditions on the 

free surface. The results compare well with those from the commercial CFD tool 

FLUENT, a BEM based potential flow solver and other methods.  

Potential flow solvers are known as an effective tool for predicting the 

free-surface elevation, and have the advantage of requiring less computational 

resources. As shown in Vugts (1968); Roddier (2000) and in the present study, the 

effect of viscosity is significant in predicting hull roll motions and corresponding 
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hydrodynamic loads, which makes the application of the viscous solver to ship 

roll motion problems inevitable.  

A one-to-one comparison can be made between the commercial CFD tool 

FLUENT and NS2D since both are FVM based viscous solvers. FLUENT has the 

advantage over NS2D in its ability to solve turbulent flow, as well as in laminar, 

and can be run in parallel. On the other hand, NS2D simulations require less grid 

resolution near the hull geometry than FLUENT runs to produce results with the 

same accuracy due to the boundary conditions and numerical settings. In addition, 

the application of the GMRES algorithm in the NS2D solver gives a better 

convergence rate in solving the system of algebraic equations. The NS2D solver, 

therefore, is more efficient for solving hull motion problems in laminar flow by 

using a single CPU. However, in the case of submerged hulls, the aforementioned 

advantages are not sufficient to beat the parallel capability of FLUENT at very 

fine grid resolutions. In spite of FLUENT’s capability to handle over-turning and 

breaking waves by using VOF method, the present research focuses on ship-

shaped hull roll motion problems, where the effect of over-turning or breaking 

waves usually does not play an important role in the prediction of ship motions 

and the corresponding hydrodynamic loads. Moreover, it is more computationally 

expensive to use VOF method for capturing the free surface. Therefore, the 

development of a robust and efficient computational tool for simulating ship 

motions is in demand, and the NS2D solver has shown the advantage of being 

applied to ship-shaped hull roll motion problems. 

• Systematic studies on two-dimensional ship-shaped hull motions: In the case of 

prescribed roll motions, sensitivity analyses in space and in time were performed, 

and the effect of turbulence is studied by using FLUENT with the implementation 
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of the k-  model. The effect of turbulence is found to be small in the simulations 

of ship-shaped hull motions even with the installation of bilge keels. The free 

surface effects were addressed by comparing the results from ship-shaped hulls to 

those from submerged hulls, and the results show that the wave propagation on 

free surface carries energy away from the hull. As a result, a lower roll frequency 

produces a smaller wave height on the free surface, which leads to higher 

hydrodynamic loads on the hull. A study on different roll angle amplitudes was 

performed using the round bilge hull, and the results show that the current model 

can handle roll angles up to 20 degrees. The effects of hull geometries are 

investigated, and the study also includes the effects of keel lengths for the bilge 

keel model. In the case of free-decay motions, the effects of hull geometries and 

initial roll angles on roll decay motions were also analyzed. Among all the 

analyzed hull models, the 4% bilge keel model has been demonstrated to be the 

most effective model in terms of roll decay and has the highest roll decay rate.  

In general, the moment histories predicted from NS2D, FLUENT and 

other methods show a good agreement. Also, the corresponding hydrodynamic 

coefficients predicted from all these methods agree fairly well. However, some 

differences were observed in the study, particularly in the case of the 4% bilge 

keel model. Despite the fact that the roll moment histories from NS2D and 

FLUENT are very similar, the resulting added-mass coefficients have a 

significant difference in the case of Fn=0.6. In the present study, it has also been 

found that using a linear combination of added-mass and damping coefficients to 

represent a periodic force or moment histories can be inadequate, particularly for 

the hulls subject to roll motions. Therefore, the calculation of the hull response in 

time domain becomes inevitable. 
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• Extension of the present method into three dimensions: The present numerical 

scheme has been successfully extended from two into three dimensions. The 

NS3D solver has been well validated in three test cases. The first two cases are 

3D problems with 2D solutions, and the 3D results are compared well to those 

solved in 2D. The last one is conducted for a hull with non-uniform cross-section 

subject to prescribed roll motions, and the results are compared to those from the 

2D approach using strip theory. The NS3D results show the capability of the 

present numerical scheme to apply to fully 3D ship motion simulations. 

 

7.2 RECOMMENDATIONS 

Over the course of this research, the agreement between the results from NS2D 

and those from other methods has been satisfactory, giving the confidence in the present 

numerical scheme. However, the ultimate objective of this research is to model the 

interaction between incoming waves and an FPSO vessel in roll. To achieve this goal, the 

following may be included: 

• Parallelization of the numerical solver: The two-dimensional numerical solver 

has been successfully extended into three dimensions. However, the application of 

the present solver to a three-dimensional problem with more complex hull 

geometries is limited by the high demand of computational resources. A parallel 

version of the Navier-Stokes solver can resolve this issue by dividing the 

computational domain into several smaller zones, and then solving the problem in 

parallel. 

• Handling more complex geometries: In 2D simulations, the present study has 

shown that the prediction of shed vortices for hulls with sharp corners, e.g., bilge 
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keel model, is complicated, and more studies are needed, particularly when the 

roll frequency is low. For 3D simulations, the gap effect between the hull and the 

side boundary (in the case of hull sections tested in between the walls of a wave 

basin) need to be analyzed, and more studies of the ship motions with full-scale 

FPSO vessel geometries need to be included. In addition, comparisons can be 

made between the results from the two-dimensional strip-wise approximation and 

those from a fully three-dimensional simulation. The difference between them 

should also be addressed in the future. 

• Ship motion in an ambient wave field: The study of prescribed or free-decay 

motions of hulls can provide useful information for ship design. However, studies 

on hulls in waves are still in demand, particularly for FPSO vessels subject to 

incoming waves with various frequencies and heading angles. The analysis of the 

hydrodynamic interaction and motion responses of adjacent multiple floating 

vessels in waves must also be addressed, due to their importance in affecting the 

FPSO-shuttle offloading operability. 

• Turbulent flow modeling: As shown in the present study, the effect of turbulence 

is small when predicting the hydrodynamic loads in ship-shaped hull roll motion 

problems and also in the case of submerged hulls with round corners (round bilge 

model). For submerged hulls with sharp corners, according to our numerical 

experience, the results were found to be very sensitive to grid resolution, and 

therefore, more studies on these aspects need to be addressed in the future. 

Moreover, in the present study, the effect of turbulence was performed using 

FLUENT, and the model coefficients are based on the default settings, which are 

not defined specifically for modeling ship roll motion problems of hulls with 

sharp corners. The values of those given model coefficients can be inadequate and 
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may produce a higher dissipation of the vortices near the hull. A study of the 

effect of turbulence by using Direct Numerical Simulation (DNS) method in the 

case of hull sections in roll could be very helpful, and should be addressed in the 

future. 
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Appendix A: Approximation of Fluxes and Cell Face Values 

This appendix describes the calculations for the cell face value, the normal 

derivative values and the convective flux. 

 

A.1 CALCULATIONS FOR CELL FACE VALUE 

From Eq. (3.11) and Eq. (3.13), the cell face value is obtained using Tayler series 

expansion: 

 

f = f ' + X f f ' f ' + H f ' + X f f ' f '  (3.11) 

f ' (CP ) f P + CNB NB ,

f ' (CP ) f P + CNB NB .
 (3.13) 

 

where the corresponding coefficients (CP)f and CNB are given as: 

(CP ) f =
XNB f '

XP f ' + XNB f '

=

XNB f

XP f + XNB f

,

CNB =

XP f '

XP f ' + XNB f '

=

XP f

XP f + XNB f

,

 (A.1) 

which lead to: 

 
f (CP ) f ( P + X f f ' P ) + CNB ( NB + X f f ' NB ).  (A.2) 

From Eq. (3.14): 
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P

1
f nAf .  (3.14) 

It is assumed that f  is known from previous iteration, and Eq. (3.14) and Eq. (A.2) are 

then solved through iterative procedure. For better convergence rate, Eq. (A.2) can be 

applied again in Eq. (3.14), which gives: 

P

1
( f ' + X f f ' f ' ) nAf

=
1 (CP ) f P + X f f ' P( )

+CNB NB + X f f ' NB( )
 nAf

 (A.3) 

When the above equation is substituted into Eq. (A.2), the cell face value is given as:  

f dP P + d̂P P + dl l
l

+ d̂l l
l

,

l = surrounding cells.
 (A.4) 

where the subscript "l" represents the surrounding cells, which includes all the NB points 

and the neighboring points around each NB; dP , dl , d̂P  and d̂l  represent the 

corresponding coefficients; and "^" indicates the coefficients that are associated with 

irregular grids, which become zero when f and f  are collocated on each cell face.  

 

A.2 CALCULATIONS FOR NORMAL DERIVATIVE VALUES 

From Eq. (3.15), the derivative of any variable  with respect to the normal 

direction on the cell face is given as:  
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n f

NB ' P '

(XNB ' XP ' ) n
 (3.15) 

The values at those two auxiliary points are calculated using Taylor series expansion: 

 

P ' P + XP ' f P ,

NB ' NB + XNB ' f NB .
 (A.5) 

With these expressions, Eq. (3.15) becomes: 

 

n f

NB P

(XNB ' XP ' ) n

+
XNB ' f NB XP ' f P

(XNB ' XP ' ) n
.

 (A.6) 

If Eq. (A.3) is again used in Eq. (A.6), it can lead to an algebraic equation: 

n f

jP P + ĵP P + jl l
l

+ ĵl l
l

,

l = surrounding cells.

 (A.7) 

where jP , jl , ĵP  and ĵl  denote the corresponding coefficients.  

 

A.3 CALCULATIONS FOR CONVECTIVE FLUX 

From Eq. (3.17), the cell-face velocity vector for calculating the convective flux 

in the momentum equation is given as: 



149 

 

U f Cup (UP + X f P UP ) + (1 Cup )(UNB + X f NB UNB ),

Cup = 0.5(vn + vn ) / vn ,
 (3.17) 

When Eq. (A.3) is substituted into Eq. (3.17), the velocity vector on the cell face is 

obtained, which is given as: 

 

U f kPUP + klUl
l

+ k̂P UP + k̂l Ul
l

.  (A.8) 

It is similar to Eq. (A.4) but has different coefficients kP , kl , k̂P  and k̂l . The 

substitutions of Eq. (3.6), Eq. (A.7), and Eq. (A.8) in Eq. (3.10) result in a system 

algebraic equation of the momentum equations: 

   

a
P
U

P
+ a

l
l

U
l
=

1
p

f
nA

f
+ â

P
U

P
+ â

l
l

U
l
,  (3.18) 

where aP , al , âP  and âl  are the corresponding coefficients. 
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Appendix B: Non-Dimensionalization 

In the NS2D solver, all the variables are made non-dimensional. Combinations of 

the following scales are used to non-dimensionalize all the variables, a characteristic 

length Lo, which is a representative length in the problem being solved (i.e. hull beam B, 

water depth hd or plate height h0), a characteristic time To, and a characteristic velocity Uo, 

which is equal to Lo/To. The non-dimensionlizations are summarized as follows: 

X *
=
X

L
o

,  
*
=
L
o

3
,   A

f

*
=
A
f

*

L
o

2
,

U *
=
U

U
o

=
U

L
o

/ T
o

,

t* =
t

T
o

,  

p*
=

p

U
o

2
=

p

L
o

2
/ T

o

2
,

F *
=

F

U
o

2L
o

=
F

L
o

3
/ T

o

2

M
o
=

M
o

U
o

2L
o

2
=

M
o

L
o

4
/ T

o

2
,  M =

M

U
o

2L
o

2
=

M

L
o

4
/ T

o

2
.

 (B.1) 

The two parameters are used in the NS2D solver. The first is the Reynolds number Re, 

which controls the flow viscosity in the momentum equations. The other one is the non-

dimensional gravity g* , which is used for calculating the free surface. The two 

parameters are defined as: 
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g
*
=

g

L
o

/ T
o

2
,

Re =
U

o
L

o
=

L
o

2
/ T

o .

 (B.2) 

The discrete non-dimensional continuity and Navier-Stokes equations then can be re-

written as: 

   

(U
f

* n)A
f

*
= 0,

U *

t*

*
+U *

*

t*
+ (v

n

* v
gn

* )U
f

* 1

Re

U *

n
f

A
f

*
= p

f

* nA
f

* .

 (B.3) 
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Glossary 

Latin Symbols 

A  periodic motion amplitude of the wave-maker  

a66  added-mass coefficients 

b66  damping coefficients 

aP ,al , âP , âl  coefficients in the system algebraic equation of the momentum 

equations 

Af  area of the cell side 

B  hul beam 

Cd  drag coefficient 

Cm  inertia coefficient 

(CP)f, CNB coefficients for linear interpolation 

Cup  direction coefficient used in upwind scheme 

D  hull draft 

df  coefficient of the velocity-correction correction term, 

 
d

f
= a

p
+ a

ll
 

 
FB   body force vector 

Fo   total force vector on the hull 

Fc  force value from a coarser grid 

Fe  "exact" force value 

FP  horizontal force on the plate 

Fn  Froude number (non-dimensional frequency), Fn = B / 2g  

g  acceleration of gravity 

H  High-order terms 
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h0  plate height 

hd  water depth in wave-maker problem 

hP ,hl , ĥP , ĥl  coefficients in the system algebraic equation of the pressure-

correction equation 

KC  Keulegan-Carpenter number, KC=UinTin/h0. 

L0, L1 vertices on the free surface and one level below the free surface 

 m   mass flux of each cell face 

 n   unit normal vector to the cell face 

(nx, ny, nz) Cartesian components of  n  

NT  number of data points used for calculating the least square error 

M   hydrodynamic moment  

Mo  total moment 

Mc  moment from a coarser grid 

Me  "exact" moment 

O  coordinate system origin 

p  pressure 

pap  atmosphere pressure 

Re  Reynolds number, Re=U0L/ . 

Rf  ramp function for prescribed roll motion 

s   unit tangential vector to the cell face 

SF(t)  instantaneous position of the free-surface 

SH(t)  instantaneous position of the hull surface 

t  time 

T  period of the sinusoidal function 

To  a characteristic time 
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Tin  period of the sinusoidal inflow 

(u, v, w) three velocity components in the Cartesian coordinate system 

(ug, vg, wg) three grid velocity components in the Cartesian coordinate system 

 U   velocity vector 

U0  a characteristic velocity 

vgn   normal component of the velocity of the control volume boundary 

vn   normal component of the flow velocity on the cell face 

vs   tangential component of the flow velocity on the cell face 

(x, y, z)  three directions in Cartesian coordinate system 

 

Greek Symbols 

  angle of roll 

  angular velocity 

  angular acceleration 

0  roll angle amplitude 

  frequency ratio 

  boundary-layer cell height 

 X   distant vector between two points 

t  time step size 

f  volume swept by the cell boundary between two time steps 

F  absolute least square error of the force history 

m  absolute least square error of the moment history 

  an arbitrary variable 

  wave height 
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  kinematic viscosity 

  density 

  frequency of roll 

 

Other Symbols 

  volume of the control volume 

  boundary of the control volume 

^  coefficients that are associated with irregular grids 

~  provisional value in the SIMPLE algorithm 

overbar interpolated value at the cell face 

 

Subscripts 

DB  point index at the domain-boundary cell face 

FS  point index at the free-surface-boundary cell face 

f  point index at the center of the cell face 

f'  point on the line between P and NB 

i  data index at each time step 

l point index at the center point of the surrounding cell (NB cells and 

the neighboring cells around each NB cell) 

NB  point index at neighboring point (on either side of the cell face) 

P  point index at the center of the cell 

tn  node point indices at the domain-boundary cell face 
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Superscripts 

m+1  time index at current time step 

m-1, m  time indices at previous time steps 

'  correction term 

*  non-dimensional term 

 

Acronyms 

BEM  Boundary Element Method 

CDS  Central Differencing Scheme 

CFD  Computational Fluid Dynamics 

CPU   Central Processing Unit 

CV  Control Volume 

DFSBC Dynamic Free Surface Boundary Condition 

FPSO   Floating, Production, Storage and Offloading (vessels) 

FVM   Finite Volume Method 

KFSBC Kinematic Free Surface Boundary Condition 

RANS  Reynolds Averaged Navier-Stokes (equations) 

SIMPLE Semi-Implicit Method for Pressure-Linked Equations 

VOF  Volume Of Fluid 

 

Computer Programs 

BFFDM Boundary-Fitted Finite-Difference Method based numerical solver 

(Alessandrini and Delhommeau 1994) 

FLUENT commercial CFD software 
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FSRVM Free-Surface Random Vortex Method based numerical solver 

(Yeung et al. 1993) 

GAMBIT grid generator provided by FLUENT Company 

MBLF  BEM based potential flow solver (Moving Body Linear Free-

surface) 

NL-BEM  BEM based potential flow solver (fully non-linear free surface) 

NS2D/NS3D two-dimensional/three-dimensional Navier-Stokes solver 
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