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Publication No.
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A two-dimensional Boundary Element Method (BEM) is developed to study the

strongly nonlinear interaction between a surface-piercing body and the free-surface.

The scheme is applied to problems with and without the possibility of ventilation

resulting from the motion and geometric configuration of the surface-piercing body.

The main emphasis of this research work is on the development of numerical meth-

ods to improve the performance prediction of surface-piercing propellers by including

the whole range of free-surface nonlinearities. The scheme is applied to predict the

ventilated cavity shapes resulting from the vertical and rotational motion of a blade-

section with fully nonlinear free-surface boundary conditions. The current method

is able to predict the ventilated cavity shapes for a wide range of angles of attack

and Froude numbers, and is in good agreement with existing experimental results.

Through a comparison with a linearized free-surface method, the current method

highlights the shortcomings of the negative image approach used commonly in two-

dimensional and three-dimensional numerical methods for surface-piercing hydrofoils

or propellers. The current method with all its capabilities makes it a unique contribu-

tion to improving numerical tools for the performance prediction of surface-piercing
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propellers. The scheme is also applied to predict the roll and heave dynamics of two-

dimensional Floating Production Storage and Offloading (FPSO) vessel hull sections

within a potential flow framework. The development of the potential flow model is

aimed at validating the free-surface dynamics of an independently developed Navier

Stokes Solver for predicting the roll characteristics of two-dimensional hull sections

with bilge keels.
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Chapter 1

Introduction

A surface-piercing body can be defined as a marine structure or device with a

part of itself above water that breaks the air-water interface or the free-surface. This

definition includes the whole gamut of water-crafts, seafaring vessels, fixed/floating

offshore structures, surface-piercing propellers, etc. The field of marine hydrodynam-

ics abounds with examples where there is a strongly nonlinear interaction between a

surface-piercing body and the free-surface as a result of its motion or its placement

in a complex marine environment.

A marine propeller, however, might seem like an oddity in the list of surface-

piercing bodies as the vast majority of propellers are designed to be fully submerged

and rarely operate near the free-surface except during broaching, say in high seas or

shallow waters. A flow phenomenon that is commonly encountered by submerged

propellers is cavitation - noted by Sir Charles Parsons in 1894 as “vacuous cavities”

that formed behind the rapidly turning propeller blades during the trials of the

Turbinia1 [Mackie and Hutchinson 1997]. Extreme cavitation often leads to propeller

racing and undermines its ability to fully absorb the delivered power. This makes it

impossible to power high-speed crafts with propulsion systems based on conventional

propellers, even with the use of supercavitating sections. A way out of this quagmire

was found through the use of a pre-existing concept of a partially-submerged or

surface-piercing propeller. Hadler and Hecker [1968] describe the surface-piercing

1Parsons later overcame the effects of cavitation by using nine propellers, mounted three each in
tandem on three shafts, to propel the Turbinia at a speed of 34.5 knots - a record-breaking speed
during his time [Mackie and Hutchinson 1997]
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propeller as a specialized overshoot of the screw propeller initially viewed as another

means besides the paddle wheel for achieving shallow-draft propulsion. The report

of Hadler and Hecker [1968] also provides a very interesting history of the surface-

piercing propeller. Similar to a paddle wheel, a part of the partially submerged

propeller pierces the water surface during a cycle of revolution. A rather interesting

feature of the resulting flow is ventilation - drawing of air from the free-surface and

occurrence of air-filled cavities on the propeller suction side (these cavities also get

carried over into the propeller wake, see Figure 1.1). The idealized boundaries of the

ventilated cavities are merely extensions of the free-surface (see Figure 1.11) and all

the nonlinear effects of the propeller interacting with it get tagged along.

PROPELLER BLADE

Figure 1.1: Ventilated cavities formed during the operation of a surface piercing
propeller. View from underneath, with flow going from right to left. Taken from
[Olofsson 1996].
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A much more common instance of a nonlinear interaction is that between a

floating body and the free-surface on which it floats. Figure 1.2 shows one such

example of the generation of a steep bow-wave in the forward region of a naval

vessel. In many cases it is sufficient to linearize the free-surface and body boundary

conditions, and solve the linear problem. This approximation is sufficient if the

amplitude of the waves generated on the free-surface and the motions of the body

are small. However, the linearization fails if the amplitude of body motions is large,

in which case nonlinear free-surface effects have a strong influence on the dynamics.

Figure 1.2: Generation of a bow-wave in the forward region of naval vessel. Taken
from [Faltinsen 2005].

The prediction of the kinematics and dynamics of surface-piercing bodies is an

area of research that has been extensively studied - mostly within the precepts of

potential flow. Here we consider the ventilation characteristics of surface-piercing

propellers and the dynamics of hulls or specifically FPSO (Floating, Production,

Storage and Offloading) vessels. The common link between the two seemingly dis-

parate problems is the presence of the free-surface and the resulting nonlinear inter-

action.
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1.1 Surface-piercing Propellers

Surface-piercing propellers (hereafter referred to as SP propellers) and waterjets

have emerged as the two predominant systems of propulsion for high-speed crafts

(vessels that operate routinely at speeds in excess of 30 knots [Baird 1998, Faltinsen

2005]). Cavitation and its detrimental effects of loss of thrust, noise, vibration and

erosion present a formidable barrier that precludes the use of subcavitating or su-

percavitating propeller based systems. Even though it is difficult to draw a clear de-

marcation between the two modes of propulsion in terms of feasibility, current trends

indicate the prevalence of SP propellers for high-speed crafts with displacements be-

low 50 t while waterjets are used for crafts with higher displacements [Blount and

Bartee 1997].

The elements of the surface-piercing propulsion system are arranged in such a

manner that when the vessel is under-way, only a part of the propeller is submerged

during a cycle of revolution (the actual level of submergence depends on the trim

of the vessel and other factors). A typical arrangement of the components of a

surface-piercing drive is shown in Figure 1.3. SP propellers are also referred to as

partially-submerged propellers because of this feature. Kamen [1990] notes some of

the advantages offered by such an arrangement, which in turn translate to better

propulsive efficiency and extended range of operation :

(i) The maximum feasible diameter of a fully submerged propeller is constrained

by the vessel draft, engine location and shaft angle, and hull blade-tip clear-

ance. For a given speed and thrust, this limits the maximum efficiency that

can be achieved. However, a surface-piercing propeller is not constrained by

these geometric/operational limitations as it can operate partially out of water

allowing for a larger diameter and better efficiency.

(ii) Cavitation is a formidable barrier that limits the performance of fully sub-

merged propellers at high speeds. Even though the performance range can be
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extended with the use of supercavitating propellers, the noise, vibration and

erosion resulting from cavitation outweighs the gain in efficiency. Cavitation

is replaced by ventilation in the case of SP propellers with the suction side ef-

fectively being at atmospheric pressure instead of the vapour pressure of water

(see Figure 1.11). This reduces most of the detrimental effects of cavitation

resulting from the collapse of cavities.

(iii) Appendage drag is effectively eliminated due to the absence of shafts and struts

under water.

http://n2speedturbineboats.com/apr1902.jpg

Figure 1.3: Typical surface-propeller drive arrangement
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1.1.1 Performance Prediction

Experimental Methods

In spite of being an efficient system of propulsion, the design of partially submerged

propellers has often been performed on a trial and error basis with full-scale pro-

pellers or based on results from model tests. This has been so because of the lack

of reliable numerical tools based on rational hydrodynamic theory. Reynolds [1874]

was the first to study the air-drawing of marine propellers based on some very basic

model tests. Shiba [1953] conducted one of the best known experimental studies on

the air-drawing of marine propellers. During the study, Shiba [1953] performed var-

ious tests on air-drawing to establish the law of similarity for systematic tests with

model propellers and put forward a method of application to actual full-scale pro-

pellers. Other notable investigations include the works of Hadler and Hecker [1968],

Rose and Kruppa [1991], Rose et al. [1993]. The primary goal of these experimental

studies was to determine the time averaged characteristics of the propeller. Apart

from scale effects [Shen 1975, Scherer 1977] and influence of test techniques [Morgan

1966, Suhrbier and Lecoffre 1986], the biggest drawback of such tests is the lack of

information on the dynamic characteristics that are important from the structural

design point of view. This was remedied in the experimental work of Olofsson [1996]

where the focus was on the dynamic performance characteristics. In the work of

Olofsson [1996], model tests were conducted in a cavitation tunnel for a range of

operating conditions. Subsequent works include that of Miller and Szantyr [1998],

Dyson [2000].

Numerical Methods

The widespread use of SP propellers and the prohibitively expensive model tests,

underscore the importance of developing reliable numerical tools for predicting their

dynamic performance. However, the numerical modeling of the real flow associated

with a SP propeller is too difficult a task to undertake without simplifying assump-

tions. Olofsson [1996] and Young [2002] note some of the challenges involved
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(i) insufficient understanding of the physical phenomena involved at the entry and

exit phases of the blade passage through the air-water interface

(ii) insufficient understanding of the dynamic loads associated with the propeller

piercing the water surface at high speeds

(iii) the modeling of long ventilated cavities that extend into the wake of the pro-

peller, which also get interrupted by the free-surface

(iv) the modeling of jets formed along the pressure side and the associated increase

in the free-surface elevation at the instance of blade entry and exit

(v) the effect of blade vibrations due to cyclic loading (in water) and unloading (in

air) of the propeller.

Given the challenges of dealing with the real flow, most numerical models make

the following assumptions with respect to the free-surface interaction :

(i) the Froude number is assumed to be very large and thus the effects of gravity

are neglected.

(ii) the free-surface jets formed as the blade enters and exits the free-surface are

assumed to be negligible (i.e., the free-surface is treated as a flat surface and

its effect is taken into account using the negative image method in the limit of

a large Froude number2) (see Figure 1.1.1).

(iii) the cavities are assumed to be fully ventilated, i.e., the pressure on the cavity

is constant and equal to the atmospheric pressure. Moreover, these cavities

2The Froude number is defined as Fnd = V/
√

gD where V is the ship speed, g is the acceleration
due to gravity and D is the propeller diameter. An alternative definition is Fn = (nD)/

√
gD where

n is the propeller rotational speed. In effect, the Froude number represents the relative importance
of the inertial effects compared to the effects of gravity [Newman 1977]. A Large Froude number
implies that the inertial effects dominate over the effects of gravity
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are assumed to remain ventilated during the entire cycle of revolution. The

premature collapse of these cavities results in a high-drag mixture flow that

can adversely affect the performance of the propeller (see written discussion by

Dr. William Vorus in [Vinayan and Kinnas 2008]).

P = Patm

P = PatmP = Patm

FREE−SURFACE

R

h

x, xs

y
ys

z

zs

yfs

Figure 1.4: Treatment of the free-surface in the 3D PROPCAV model. Only the
immersed part of the blade is modeled with the free-surface assumed to be flat (its
effect taken into account via the negative image method). The shaded area indicates
that part of the blade that is immersed.
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In terms of numerical performance prediction of SP propellers, the first complete

three-dimensional3 model was developed by [Furuya 1985] based on a lifting-line

approach with linearized boundary conditions (free-surface taken into account using

the method of images). The 3-D lifting surface VLM developed by Kudo and Ukon

[1994], Kudo and Kinnas [1995] for the analysis of supercavitating propellers has also

been extended for the analysis of surface-piercing propellers. The extension neglects

the effects of the free-surface and assumes the SP propeller (in supercavitating mode)

to be fully submerged. From the fully submerged results, the mean characteristics of

the SP propeller were obtained by multiplying the resultant forces with the propeller

submergence ratio.

Young & Kinnas [Young 2002, Young and Kinnas 2003] developed a numerical

method to predict the performance of SP propellers that also included the nonlinear

analysis of unsteady sheet cavitation/ventilation with the propeller subject to a time-

dependent inflow. The method was developed over an existing robust numerical tool

PROPCAV (PROPeller CAVitation, [Kinnas and Fine 1992]) so named for its ability

to solve the 3-D unsteady flow around cavitating propellers. PROPCAV is based on

a low-order (piecewise constant dipole and source distribution) potential boundary

element method (BEM) and the method of Young and Kinnas [2003] allowed it to

determine the shape of the ventilated cavity surface created as a result of the passage

of the blades of a SP propeller from air to water. In addition to the aforementioned

simplifications regarding the free-surface, the 3-D hydrodynamic model makes the

following assumptions

(i) the wake is assumed to be a helical surface with constant pitch and radius.

(ii) the influence of the shed and trailing vorticity in the wake once the blade has

left the free-surface is assumed negligible.

3Prior to the development of 3-D methods, the performance prediction methods were primarily
two-dimensional. A detailed review of the 2-D methods is presented in Chapter 6
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1.1.2 Application of the PROPCAV Model

Young & Kinnas [Young 2002, Young and Kinnas 2003] applied the PROPCAV

model to the 841-B propeller tested in the experiments of Olofsson [1996]. In spite

of the simplifying assumptions, the numerical model predicted ventilation patterns

that agreed well with the experimental results. Figure 1.5 shows a representative

comparison of the predicted and measured blade forces for an advance ratio JA=0.8

(the different phases in the cycle of revolution of a SP propeller are shown in Figure

1.6). In comparison with the experimental results, the PROPCAV model predicts

the mean forces with reasonable accuracy. However, the following discrepancies can

be observed:

(i) A significant difference exists between the predicted and measured forces during

the entry phase. Similar differences in the entry phase of the forces exist even

for higher advance ratios.

(ii) The experimental results show “humps” in the blade forces. Olofsson [1996]

attributes this to blade resonance effects as a result of the cyclic loading and

unloading of the propeller. This behaviour is not captured by the PROPCAV

model as it assumes the propeller to be rigid.

The difference in forces at the entry and exit phases of the propeller is mainly

due to the use of the negative image method that neglects the formation of jets, rise

in elevation of the free-surface and other nonlinear free-surface effects. The effect

of vibration is not as significant at the entry phase because the sturdier part of the

propeller enters the free-surface first.
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1.2 Dynamics of Hull-sections

A floating body in an ambient wave-field has six degrees of freedom, three trans-

lational modes - surge, heave, sway, and three rotational modes - roll, pitch, yaw.

Out of these six components, the three that stand out are the motions in the vertical

plane - heave, roll and pitch. Buoyancy provides a restoring force such that any

excitation in these three modes tends to produce an oscillatory response or more

specifically a damped simple harmonic motion. The motions in the horizontal plane

are unrestored.

x

y

z

Pitch

Roll

Yaw
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ve

Figure 1.7: Six degrees of freedom,translation-surge, heave, sway, rotation-roll, pitch,
yaw

With a simple harmonic motion (SHM) comes the issue of resonance. A SHM

system will attain maximum amplitude oscillations or resonate when the excitation

frequency equals the natural frequency of the system. In the case of wave-excited

motion, the excitation frequency is nothing but the encounter frequency. There are

primarily two sources of damping in the case of floating bodies - (i) viscous-damping
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due to frictional effects, and (ii) wave-damping due to the energy carried away

by the free-surface waves. In the case of ship-shaped bodies, wave-damping is the

dominant source [Lewis et al. 1989]. This is mostly the case unless some active or

passive devices are used to amplify the viscous-damping. Fortunately in heave and

pitch, the wave-damping is sufficiently large to prevent resonance as the energy gets

dissipated quickly. However in roll, the resultant wave-damping is almost negligible,

making the system prone to resonance. These two aspects can be seen in the heave

and roll response of a typical ship in Figure 1.8.
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Figure 1.8: Typical heave and roll response of a ship.[Lewis et al. 1989]
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1.2.1 FPSO Roll Mitigation

Floating production facilities have gained much importance in recent years with

the movement of oil and gas fields into deeper waters. One of the widely used

floating facilities is the Floating, Production, Storage and Offloading (FPSO) vessel,

an example of which is shown in Figure 1.9.

http://www.eagle.org/prodserv/EnergyNews15/images/thisIssue/LNG-FPSO.jpg

Figure 1.9: A typical FPSO facility. Graphic from internet.

FPSOs operate in a complex ocean environment with multi-directional waves,

currents, wind driven seas and swells. In such an environment, the day-to-day op-

erations of FPSOs have often been plagued by the problem of large roll motions - a

result of resonance due to negligible wave or potential damping. Such resonant mo-

tions can severely compromise the safety of the overall system and affect its efficiency.

One way of mitigating these resonant roll motions is to amplify the viscous-damping

component through the use of passive roll damping devices called bilge keels. Bilge

keels are appendages fixed to each side of the hull in the “turn of bilge” that increase

viscous damping by inducing flow separation. In actual construction, the bilge keels
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are fabricated from small plates that are attached perpendicularly to the ship’s hull

(see Figure 1.10) and provide a relatively inexpensive way of increasing roll-damping

compared to other active stabilizing systems like ARTs (anti-roll tanks). Predicting

the effectiveness of bilge keels in reducing the resonant roll motions has been studied

extensively - both numerically and experimentally.

http://k43.pbase.com/v3/45/387545/1/50702675.DSC_3086z.jpg)

Figure 1.10: Typical hull with bilge keels

Developing a 3-D numerical model to solve the roll dynamics of FPSOs, with the

whole range of viscous and nonlinear free-surface effects, has its challenges - mostly

in terms of computational resources needed to accurately model the viscous effects.

To circumvent some of the challenges, the prediction of roll dynamics has often

been done in the context of strip-theory, originally introduced by Korvin-Kroukovsky

(see [Korvin-Kroukovsky and Jacobs 1957]). In the strip-theory approach, the ship

is divided into two-dimensional sections, with each section being considered to be
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part of an infinitely long prismatic cylinder. The individual sections are treated as

separate two-dimensional problems, the results of which are integrated in a suitable

manner to obtain a three-dimensional solution. An important restriction in the

above simplification is that the geometry of the ship must be slender, i.e., the beam

and draft must be small compared with the length. Also, the shape and dimensions

of the two-dimensional sections must vary slowly along the length (for the other

restrictions imposed by a strip-theory approach, see Ogilvie and Tuck [1969]). The

hull-form of the FPSO is such that both these condition are met, making it amenable

to a two-dimensional analysis.

The majority of the numerical schemes developed to predict ship motions have

been within the framework of inviscid or potential flow theory. This is because

viscous effects do not significantly affect the free-surface or the hull dynamics (with

the exception of special scenarios like roll prediction where the effects of viscosity are

important). This aspect has been proven over and again in the notable numerical

schemes based on potential flow of Faltinsen [1977], Vinje and Brevig [1981], Lin

et al. [1984] and Dommermuth and Yue [1987]4, and the experimental investigations

of Vugts [1968] and Roddier [2000] . Even though potential flow methods are limited

in predicting the viscous effects due to bilge keels, they provide a quick and reliable

way to gauge the nonlinear free-surface aspects of the roll-dynamics problem.

The development of a viscous flow solver to predict the effectiveness of bilge keels

has been an area of focus within the Ocean Engineering Group at the University of

Texas at Austin - included in the works of Kakar [2002], Kacham [2004] and Yu

[2008]. During the development of these viscous solvers, several simplifications were

made regarding the treatment of the free-surface and the movement of the hull-

4This is not an exhaustive list of numerical schemes developed to predict the dynamics of hull-
sections within the framework of potential flow theory. A detailed review of the application of
potential flow methods to the prediction of nonlinear free-surface dynamics is provided in Yeung
[1982] and Tsai and Yue [1996]
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section. Kakar [2002] and Kacham [2004] made the following simplifications

(i) free-surface boundary conditions are based on linear-wave theory.

(ii) motions of the hull are assumed to be small and hence a non-moving grid is

used to represent the domain (this is equivalent to the boundary conditions

being applied on the mean body surface subject to roll or heave).

These approximations were found to be sufficient for small angles of roll (amplitude

of roll upto 5◦), but failed for resonant motions with roll angles in the range of 15◦-

20◦. It was concluded that both fully nonlinear free-surface boundary conditions and

a moving-grid formulation are required to model the resonant roll motion. Yu [2008]

developed a Navier Stokes solver (NS2D) that improved on the linear approximations

of Kakar [2002] and Kacham [2004] by including a moving grid formulation to take

into account the extreme motions of the hull-section. The solver also included a

nonlinear free-surface tracking scheme.

1.3 Objectives

The objectives of this research are the following:

Two-dimensional analysis of surface-piercing hydrofoils

The three-dimensional PROPCAV based hydrodynamic model for the perfor-

mance prediction of SP propellers lacks a nonlinear free-surface model and its ab-

sence is seen to cause discrepancies in the overall dynamic behaviour of the forces.

It was also mentioned that including the whole range of nonlinear free-surface effects

in the 3-D model is fraught with challenges. We feel that it is prudent to first fo-

cus on the development of a two-dimensional numerical method with fully nonlinear

free-surface boundary conditions that considers the effects of gravity explicitly and

that can be applied to the ventilating entry of arbitrarily shaped blade sections. The
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insight gained through the 2-D study can be used as a basis for improving the 3-D

model. The objectives of the 2-D study are :

(1) Quantify the effects of the Froude number : The Froude number, defined as

Fn = nD/
√
gD with D being the diameter of the propeller and n the rate of

revolution, essentially measures the influence of gravity, g. The effect of gravity

is negligible in the fully ventilated regime (at low advance ratios) when Fn > 3

[Olofsson 1996, Shiba 1953]. However, in the partially ventilated regime (at high

advance ratios), the Froude number can have an effect on the overall ventilation

characteristics. Moreover, each section of the propeller operates at a different

“local” Froude number. The 2-D model can be used to identify sections that

could either partially or fully ventilate.

(2) Quantify the added hydrodynamic forces due to nonlinearity of the free-surface

and the ventilated cavity surface.

The specific problems to be studied are shown in Figure 1.11.

• Wetted-Entry : The velocity, the geometry of the blade-section and the other

characteristics of the entry problem are such that there is no ventilation. Both

the suction side and the pressure side of the section are wetted.

• Ventilating-Entry : The velocity, the geometry of the blade-section and the

other characteristics of the entry problem are such that there is ventilation. In

this case, the suction side is assumed to be fully ventilated, which is an ideal

scenario for a SP propeller.
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Figure 1.11: Wetted and ventilating entry of surface-piercing hydrofoils. P indicates
the ambient pressure, Patm represents the atmospheric pressure

20



Analysis of two-dimensional hull-sections

The principle behind the use of bilge keels is to amplify the viscous damping

effects in roll to mitigate the resonant motions. During the development of the

NS2D viscous flow solver [Yu 2008], a need was felt to develop an alternate numer-

ical scheme that mainly dealt with the nonlinear aspects of the free-surface. The

objectives here are:

(1) Develop a potential flow solver to model the kinematics and dynamics of two-

dimensional hull section within the context of strip theory.

(2) Provide a framework to gauge the nonlinear effects of the free-surface and vali-

date an inviscid version of the NS2D solver [Yu 2008].

Only hull-sections with a round bilge geometry are considered here as the po-

tential flow solver is incapable of taking into account the effects of viscosity and flow

separation due to bilge keels.

Hull−section

DYNAMICS OF HULL−SECTIONS

Free−surface Free−surface

(P = Patm)(P = Patm)

Figure 1.12: Dynamics of hull-sections. P indicates the ambient pressure, Patm

represents the atmospheric pressure
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1.4 Organization

The dissertation is organized into six chapters:

Chapter 2 : Introduces the mathematical formulation of a generalized boundary

value problem for a nonlinear free-surface body interaction.

Chapter 3 : Deals with numerical implementation of the free-surface problem and

provides details of the key aspects of the numerical algorithm.

Chapter 4 : Provides details of the different studies performed to validate the

numerical algorithm before being applied to the problems of interest.

Chapter 5 : The study of the dynamics of two-dimensional hull sections is pre-

sented here.

Chapter 6 : Deals with the study of the ventilating entry of a two-dimensional

hydrofoil, in both vertical and rotational motion.

Chapter 7 : Conclusions and recommendations for future work are presented here.

Some of the relevant details of the numerical algorithm are presented in the

Appendices.
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Chapter 2

Mathematical Formulation

In this chapter, an outline of the basic equations, boundary conditions and the

underlying assumptions pertaining to the solution of a class of two-dimensional free-

surface problems is presented.

The basic assumption is that of potential flow, which makes the problem more

tractable through the application of integral-equation (IE) methods. The IE methods

have the advantage of reducing the spatial dimensions by one (see [Yeung 1982]).

This is so because, unlike the space discretization methods like finite-difference,

finite-volume and finite-element, the quantities of interest are solved only on the

boundaries of the domain in IE methods. Values in the interior of the domain can

be derived exclusively from those specified or solved for at its boundaries.

In essence, the free-surface problem is formulated as an Initial Boundary Value

Problem (IBVP) for a velocity potential that satisfies the Laplace equation. The

IBVP is solved by combining the Mixed-Eulerian-Lagrangian (MEL) method of

[Longuet-Higgins and Cokelet 1976; 1978] for tracking the free-surface with the so-

lution of a Boundary Integral Equation (BIE). The first part of the chapter focuses

on the formulation of the general initial boundary value problem for fully nonlinear

free-surface flows. Subsequent parts of the chapter present the formulation of the

BIE that reduces the solution of the Laplace equation (for the velocity potential)

over the entire domain to that over its boundary surfaces.
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2.1 General Initial Boundary Value Problem

An ideal fluid is considered and assuming that the flow starting from rest is sub-

ject to conservative forces, the motion of the fluid at all subsequent times is deemed

irrotational when observed from a non-rotating frame of reference by Kelvin’s Circu-

lation Theorem [Batchelor 2000, Kundu and Cohen 2004]. A fixed (non-rotating iner-

tial frame of reference) Cartesian coordinate system O(x, y) consistent with Kelvin’s

theorem is chosen to represent the flow with its origin at the undisturbed water level.

Based on these assumptions, the flow can be represented in terms of a harmonic func-

tion φ(x, t) commonly referred to as the velocity potential. Here, x = (x, y) represents

the spatial location with respect to the fixed coordinate system, with x being the

horizontal measure and y the vertical measure positive upward.

The governing equation for the flow is the Laplace equation

∇2φ(x, t) = 0, x ∈ Ω(t) (2.1)

where Ω(t) ⊂ R2 represents a simply connected fluid domain1 with its boundary

defined as Γ(t). Γ(t) and Ω(t) are assumed to be functions of time to account for

deforming free-surfaces and moving bodies forming a part of the boundary. Also,

the local fluid velocity is given as

u = ∇φ = (φx, φy) (2.2)

The formulation of the boundary value problem is not complete without the

boundary conditions specified on the domain boundary Γ(t). The boundary con-

ditions are important since φ(x, t) is a harmonic function and its value throughout

the domain can be determined solely on the basis of conditions specified on the

1A domain is an open region, i.e., a connected set containing none of its boundary points. A
domain D is said to be simply connected if every closed curve in D can be shrunk, by a continuous
deformation, to any point in D [Greenberg 1998].
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boundaries. Most commonly, Dirichlet or Neumann type boundary conditions are

applied on specific parts of the boundary with Γd(t) ⊂ Γ(t) denoting the part with

Dirichlet conditions and Γn(t) ⊂ Γ(t) the part with Neumann conditions. Figure 2.1

illustrates the fluid domain and its boundaries for a ventilating free-surface problem,

while Figure 2.2 shows the same for a non-ventilating case. The major distinction

between the two problems is that, for the ventilating case a part of the body is no

longer in contact with surrounding fluid or in other words is no longer wetted. For

the ventilating case, the Neumann boundary Γn(t) consists only of the wetted part

(see Figure 2.3). Note that in Figures 2.1 and 2.2, the solid lines indicate the domain

boundaries Γ(t) while the dashed lines indicate the actual geometry of the body. Also

n is the normal vector on the domain boundary Γ(t), defined to be positive when

pointing out of the fluid domain.

x

y

n

n

Ω(t)

O

Γ(t) = Γd(t) ∪ Γn(t)

Γd(t)

Γd(t)

Γn(t)
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Γn(t)

Γn(t)

Figure 2.1: General IBVP, fluid domain and corresponding boundaries for ventilating
problems; Γd(t) : Dirichlet boundary, Γn(t) : Neumann boundary, Ω(t) : Fluid
domain; Solid lines indicate domain boundaries and dashed lines indicate the actual
physical extents of the body
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Figure 2.2: General IBVP, fluid domain and corresponding boundaries for non-
ventilating problems; Γd(t) : Dirichlet boundary, Γn(t) : Neumann boundary, Ω(t) :
Fluid domain; Solid lines indicate domain boundaries and dashed lines indicate the
actual physical extents of the body
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Figure 2.3: Ventilating case: wetted and non-wetted boundaries of the body
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2.1.1 Boundary condition: Dirichlet Boundary Γd(t) (Free-surface)

A common element in all the problems studied here is the free-surface. Two kinds

of conditions are imposed on the free-surface Γd(t) ≡ SF(t), namely the kinematic

boundary condition (KFSBC) and the dynamic boundary condition (DFSBC).

x
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y

u

v

O

u

s

n

P(x, y)

Pf

η(x, t)
Free-surface,SF(t):F (x, t) = 0

Lagrangian particle

Figure 2.4: Free-surface schematic

The KFSBC is obtained by assuming SF(t) to be a bounding surface, i.e., no

material passes across the free-surface [Dussan V 1976]. Based on the schematic

shown in Figure 2.4, let the free-surface be represented as F (x, t) = y − η(x, t) = 0.

The KFSBC on the free-surface can then be written as [Wehausen and Laitone 1960,

Dussan V 1976]

D

Dt
F (x, t) = 0 (2.3)

where
D

Dt
=

∂

∂t
+ ∇φ · ∇ is the material derivative [Batchelor 2000] denoting a

Lagrangian representation. u = ∇φ = (φx, φy) is the fluid velocity on the free-

surface and y = η(x, t) is the free-surface elevation. Also in Figure 2.4, n and s

represent the normal and tangent vectors to the free-surface respectively.
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From a Lagrangian representation of the free-surface, for a particle P(x, y) on

the free-surface, the KFSBC can also be written as [Longuet-Higgins and Cokelet

1976]

Dx

Dt
= u = ∇φ or























Dx

Dt
= u = φx

Dy

Dt
= v = φy























x ∈ SF(t) (2.4)

The dynamic boundary condition (DFSBC) is obtained from the Bernoulli’s

equation and assuming the pressure to be continuous across the free-surface. It is

assumed that the wavelength of the free-surface elevation is long enough to neglect

the effects of surface tension. Thus the pressure underneath the free-surface must

equal the atmospheric pressure above giving the most general form of the free-surface

DFSBC

∂φ

∂t
+

1

2
|∇φ|2 + gy +

Pf

ρ
= 0, x ∈ SF(t) (2.5)

where g is the acceleration due to gravity. The common form of the DFSBC is

obtained by expressing the pressure as gage pressure, in which case the pressure

on the free-surface Pf = 0. For a Lagrangian particle P(x, y), the DFSBC can be

rewritten as

Dφ

Dt
=

1

2
|∇φ|2 − gy, x ∈ SF(t) (2.6)

2.1.2 Boundary condition: Neumann Boundary Γn(t)

On a prescribed impervious boundary Γn(t), the normal velocity of the flow

equals that of the boundary

∂φ

∂n
≡ φn = V(x, t) · n, x ∈ Γn(t) (2.7)
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where n is the unit normal of Γn(t) (positive pointing out of the fluid domain) and

V(x, t) is the prescribed velocity of Γn(t).

2.1.3 Initial Condition

The IBVP is not complete without specifying the initial conditions. Since the

initial condition to be specified is unique to the particular type of free-surface problem

being solved, its form is presented along with formulation of the specific problem in

later chapters.

2.2 The Mixed Eulerian-Lagrangian Method

The mixed Eulerian-Lagrangian (MEL) method was introduced in the seminal

work of [Longuet-Higgins and Cokelet 1976; 1978] to simulate the deformation of two-

dimensional steep surface waves within the context of potential flow, which is a good

approximation up to the point of breaking. Since then, the method has become

the workhorse for simulating highly nonlinear waves and wave-body problems in

both two and three dimensions. A detailed review of the application of the MEL to

different free-surface problems can be found in [Yeung 1982, Tsai and Yue 1996, Mei

et al. 2005].

The relative success of the MEL-approach in simulating nonlinear free-surface

problems stems from its ability to decouple the time variation imposed by the free-

surface boundary conditions from the solution of the boundary value-problem. For

a typical free-surface problem starting with specified initial conditions, the MEL

approach consists of two steps that get repeated during the simulation [Mei et al.

2005]

Eulerian Step : Given Γn(t) and φn(x ∈ Γn), Γd(t) and φ(x ∈ Γd), solve the

boundary value problem (BVP) for φn(x ∈ Γd). Note that Γd(t) refers to

the free-surface since it is a Dirichlet boundary. The BVP is solved using
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a boundary-integral equation (BIE) formulation with respect to the Eulerian

variables. One advantage of the BIE formulation is that only values at the

domain boundaries need to be solved for. Since φ is known on the free-surface,

the tangential velocity φs is also known (say through numerical differentiation).

In essence, this step involves the calculation of the velocity on the free-surface

u = ∇φ = (φx, φy) = f(φs, φn, s,n).

Lagrangian Step : Obtain the new free-surface location Γd(t + ∆t) and velocity

potential φ(x, t + ∆t) for x ∈ Γd(t + ∆t) by integrating the Lagrangian form

of the KFSBC (Equation (2.4)) and DFSBC (Equation (2.6)) in time. Note

that the time integration is explicit in nature.

These two steps get repeated during the course of the simulation. Most of the

computational effort is expended in the Eulerian step, which involves the solution of

the BIE.

2.3 Boundary Integral Equation

A Boundary Integral Equation (BIE) forms a crucial part of the Eulerian step

in the MEL approach, which involves the solution of the boundary-value problem

(BVP). The BVP for the velocity potential is formulated as a BIE by introducing

the two-dimensional Green’s function G(p,q) = − 1

2π
ln rpq (satisfies the Laplace

equation). Here rpq = |p − q| is the Euclidean distance between the field point

p ≡ p(x) and the source point q ≡ q(x). The BIE obtained by applying Green’s

third identity to φ(x, t) and G(p,q) can be written as

α(p)

2π
φ(p) +

∫

Γ(t)

φ(q)Gn(p,q) dSq =

∫

Γ(t)

G(p,q)φn(q) dSq (2.8)

where α(p) is the internal angle formed at the boundaries, which is introduced as

a result of the exclusion of the singular nature of the Green’s function (see Figure
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2.5). Consider a fluid domain Ω with its boundary Γ, which is smooth everywhere

except at the corner point C. The internal angle α(p) = αc when p = C. Also,

α(p) = αs = π when p = S, a generic point on the smooth part of the boundary

(see [Pozrikidis 2002]).

C

Γ

Ω Γ : Domain boundary

Ω : Fluid domain

C : Corner Point

αc

αs = π

S

Figure 2.5: Representation of the internal angle αp

In Equation (2.8), Gn(p,q) = ∇G(p,q) · nq and φn(p,q) = ∇φ(p,q) · nq. nq

is the normal vector at q positive out of the fluid. For the general boundary value

problem formulated in Section 2.1, the BIE (Equation (2.8)) can be rearranged to

account for surfaces with Dirichlet and Neumann type boundary conditions. For

Γn(t) the value of φn is specified and Γd(t) the value of φ is known. The BIE in its

rearranged form can be written as

α(p)

2π
φ(p) +

∫

Γn(t)

φ(q)Gn(p,q) dSq −
∫

Γd(t)

G(p,q)φn(q) dSq =

∫

Γn(t)

G(p,q)φn(q) dSq −
∫

Γd(t)

φ(q)Gn(p,q) dSq

(2.9)

Equation (2.9) in turn can be solved for the boundary values φ on Γn(t) and φn on

Γd(t).

31



Chapter 3

Numerical Implementation

The previous chapter introduced the mixed Eulerian-Lagrangian (MEL) ap-

proach of solving a general free-surface IBVP. In summary, the MEL approach

consists of two steps used repetitively - starting from initial conditions (i) solve

a well-defined BVP, formulated as a BIE, for a given set of Dirichlet and Neumann

conditions on the domain boundaries, (ii) update the geometry of the free-surface

and the velocity potential on it by integrating the KFSBC and DFSBC in time, based

on the velocities obtained from the previous step. The proper treatment of these two

MEL steps dominate the numerical implementation of the free-surface problems.

This chapter presents details of the numerical implementation of the two MEL

steps. A Boundary Element Method (BEM)1 with linear isoparametric elements is

used to solve the BVP in the first MEL step. Two very important aspects of the

BEM implementation (a) treatment of corners with double nodes (b) treatment of

the free-surface jets formed during high-speed water-entry of bodies, are addressed in

detail. With regard to the time-stepping of the free-surface boundary conditions in

the second step of the MEL approach, the implementation of a fourth-order Runge-

Kutta scheme is presented in detail.

The goal of the chapter is to present an overview of the numerical aspects asso-

ciated with the solution of the general initial boundary value problem. Only aspects

that are common to the different classes of free-surface problems are covered here and

1The Boundary Element Method (BEM) is a numerical method of solution of boundary integral
equations, based on a discretization procedure [Wrobel 2002]
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details that are specific to a type of problem are presented along with its formulation

in later chapters.

3.1 BEM - Method of Weighted Residuals

Consider a generic integral equation of the form

Lu− b = 0 (3.1)

which is defined in an arbitrary domain Ω with a boundary Γ. L is an arbitrary

linear operator with constant coefficients. u is the field variable and b is an arbitrary

source distribution in Ω [Gaul et al. 2003].

Let the exact solution u be approximated such that

u ≈ ū =

n
∑

j=1

ajNj(x) (3.2)

where Nj(x) are a set of linearly independent basis functions and aj are unknown

arbitrary coefficients. We can define a residual R for the approximation based on

Equation (3.2), written as

R = Lū− b (3.3)

The notion of the method of weighted residuals is to minimize the residual, in

some average sense, over the domain. This can be written as
∫

Γ

RWjdS = 0, j = 1, 2.., n (3.4)

where the number of weight functions Wj is equal to the number of unknown coeffi-

cients aj. Equation 3.4 results in n equations for the unknown coeffcients aj.

The Boundary Element Method is based on (i) point collocation method - class

of weighted residual methods with Wj(x) = δ(x − xj), and (ii) local piecewise ap-

proximation for the interpolation functions Nj(x), i.e., Nj(x) are piecewise smooth

on subregions of Γ.
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3.2 Linear Boundary Element Method

Linear isoparametric elements form the basis for the numerical solution of the

BIE (Equation (2.8)). Following the notation given in [Wrobel 2002] and [Brebbia

et al. 1984], the variation of φ (velocity potential or dipole strength) and φn (normal

velocity or source strength), over a generic element Ej, is written as

φ(ξ) = φ
(1)
j N(1)(ξ) + φ

(2)
j N(2)(ξ)

φn(ξ) = φ
(1)
n,jN(1)(ξ) + φ

(2)
n,jN(2)(ξ)







− 1 ≤ ξ ≤ +1 (3.5)

The geometry of the element can also be represented in a similar manner with

x(ξ) = xjN(1)(ξ) + xj+1N(2)(ξ)

y(ξ) = yjN(1)(ξ) + yj+1N(2)(ξ)







− 1 ≤ ξ ≤ +1 (3.6)

In the above representation (φ
(1)
j , φ

(1)
n,j) and (φ

(2)
j , φ

(2)
n,j) are the values of the po-

tential and the flux at the two nodal points of the element. ξ is an intrinsic element

coordinate. To ensure compatibility of the potential (φ) and the flux (φn) between

the elements, the two nodal points, (xj, yj) and (xj+1, yj+1), are chosen to be the

end-points of the element (see Figure 3.1). Note that (1) and (2) represent the local

numbering, while j and j+1 correspond to the global numbering of the nodes of the

element Ej. With the nodal points at the end-points of the element, the interpolation

or shape functions N(1)(ξ) and N(2)(ξ) can be written as

N(1)(ξ) =
1

2
(1 − ξ)

N(2)(ξ) =
1

2
(1 + ξ)















− 1 ≤ ξ ≤ +1 (3.7)

The integral equation, Equation (2.8), is solved numerically by discretizing the

boundary Γ = Γd ∪ Γn based on the above representation. The boundaries Γd and

Γn are subdivided into piecewise linear elements such that [Mei et al. 2005]
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(xj, yj)

(xj+1, yj+1)

ξ

ξ = −1

ξ = +1

Ej ∈ ΓEj ∈ Γ

Ej ∈ Γ

(1)(1) (2)(2)

(1)

(2)

jj j + 1j + 1

N(1)(ξ) N(2)(ξ)

Figure 3.1: Geometry and shape functions for a linear isoparametric element

Γd(t) =

Nd
⋃

j=1

Ej

Γn(t) =

Nn
⋃

j=1

Ej

(3.8)

where Nn and Nd are the number of elements on Γn(t) and Γd(t) respectively. The

discretized form of Equation (2.8) can then be written as [Mei et al. 2005]

Nn
∑

j=1

ID(p) −
Nd
∑

j=1

IS(p) = − α′(p)φ(p)

−
Nd
∑

j=1

ID(p) +

Ns
∑

j=1

IS(p); p ∈ Γd (3.9)
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and

α′(p)φ(p) +

Nn
∑

j=1

ID(p) −
Nd
∑

j=1

IS(p) =

Nn
∑

j=1

IS(p) −
Nd
∑

j=1

ID(p); p ∈ Γn (3.10)

where

α′(p) =
α(p)

2π

IS(p) =

∫

Ej

φn(q)G(p,q)dSq = φ
(1)
n,jI

(1)
s,j + φ

(2)
n,jI

(2)
s,j

ID(p) =

∫

Ej

φ(q)Gn(p,q)dSq = φ
(1)
j I

(1)
d,j + φ

(2)
j I

(2)
d,j

(3.11)

and,

I
(k)
s,j =

∫

Ej

N(k)(ξ)G(p,q)dSq

I
(k)
d,j =

∫

Ej

N(k)(ξ)Gn(p,q)dSq



























k = 1, 2 (3.12)

The elemental integrals I(k)
s,j and I(k)

d,j are commonly referred to as the influence coef-

ficients. For linear isoparametric elements, these integrals can be evaluated analyti-

cally (see Appendix A for closed-form expressions for these integrals). The subscript

(s) denotes source influence coefficients while (d) the dipole coefficients.

For a purely Dirichlet or Neumann problem, the discretized BIE can be written

in a matrix form as [Wrobel 2002]

[H]{φ} = [G]{φn} (3.13)

where [H] and [G] are the influence coefficient matrices, {φ} and {φn} are the vectors

containing the nodal values of the potential and its normal derivatives respectively.

The elements of the influence coefficient matrices have the form
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Gij = I
(2)

s,(i,j) + I
(1)

s,(i,j+1)

Ĥij = I
(2)
d,(i,j) + I

(1)
d,(i,j+1)











p = xi ∈ Γ (3.14)

where I(2)
s,(i,j) and I(2)

d,(i,j) represent the contribution from Ej, while I(2)
s,(i,j+1) and I(2)

d,(i,j+1)

represent the contribution from the adjacent element Ej+1. Note that Ĥij is that part

of [H] that does not include the self influence coefficient (p ∈ Ej denoting the singular

part of the influence integrals). This is calculated by virtue of the property

Hii = −
∑

j
j 6=i

Ĥij (3.15)

The linear system of equations can be re-ordered based on either Neumann or Dirich-

let type boundary conditions specified on the domain boundaries and can be written

as

[A]{X} = {F} (3.16)

where {X} is the vector of unknowns and {F} is the so called “ load ” vector [Wrobel

2002]. A direct LU-solver ([Press et al. 1992]) is used to solve the re-ordered system

of equations to obtain the unknown values of φ on Γn and φn on Γd.

3.3 Double Nodes

A domain to be discretized using boundary elements can have corners at the in-

tersection of individual surfaces comprising its boundary. These corners, apart from

being points of discontinuous slopes, can have a confluence of boundary conditions

of the same or differing types. A common method of dealing with such corners is

through a double-node approach. In the case of a linear isoparametric BEM scheme,

the use of a double-node increases the number of degrees of freedom at a corner

to three. However, out of these three degrees of freedom, only one is solved for in

the BEM scheme. [Gaul et al. 2003, Brebbia and Dominguez 1992] list the different
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possibilities occurring at a double node in terms of the primary variable (velocity

potential) and the secondary variable (normal velocity or flux) :

(a) Known values: fluxes before and after the corner.

Unknown value: potential.

(b) Known values: potential and flux before the corner.

Unknown value: flux after the corner.

(c) Known values: potential and flux after the corner.

Unknown value: flux before the corner.

(d) Known values: potential.

Unknown values: flux before and after the corner.

A corner of importance is the one at the intersection of the free-surface (SF)

with the body (SB). At this corner there is a confluence of boundary conditions

- a Dirichlet condition from the free-surface side and a Neumann condition from

the body side. The different aspects of the double-node approach at the SF ∩ SB

intersection point are shown in Figure 3.2.

In Figure 3.2, j−1, j, j+1, etc., represent the global numbering of the boundary

element nodes (nodes are the end-points of a panel/element). For a generic element,

represented as E , (1) and (2) represent the local numbering of nodes belonging to

the element. Element Ej belongs to the body-surface SB with a Neumann boundary

condition, while element Ej+1 belongs to the free-surface SF with a Dirichlet boundary

condition. The double-node approach at node j + 1 is based on the following steps:

(i) For the element Ej+1 ∈ SF, both φ
(1)
j+1 and φ

(2)
j+1 are known as a result of the

Dirichlet boundary condition (velocity potential specified as an initial condition

is known at all times as it gets updated via the dynamic and kinematic free-

surface boundary conditions). A jump in the velocity potential is not allowed
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j − 1

j

j + 2

j + 3

Ej−1

Ej

Ej

Ej

Ej+1

Ej+1

Ej+1

Ej+2

SB

SB

SF

SF

Neumann Boundary,SB(Body)
φn known

Dirichlet Boundary,SF(Free-surface)

φ known

Double Node,j + 1

(1)

(1)

(1)(1)

(1)(1)

(2)(2)

(2)(2)

(2)(2)

φ
(1)
j

φ
(2)
j φ

(1)
j+1

φ
(2)
j+1

φ
(1)
n,j

φ
(2)
n,j

φ
(1)
n,j+1

φ
(2)
n,j+1

Figure 3.2: Double-node approach at the body free-surface intersection

at the intersection point and this leads to the condition φ
(2)
j = φ

(1)
j+1 with φ

(2)
j

being a part of Ej ∈ SB.

(ii) Node (2) of Ej ∈ SB and Node (1) of Ej+1 ∈ SF are treated separately (hence
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the name “double-node”). The discontinuity in the slope is considered explicitly

by having different surface normals on either boundary. This corresponds to

a discontinuous flux and leads to the condition φ
(2)
n,j 6= φ

(1)
n,j+1. Note that φ(2)

n,j

is known since Ej ∈ SB with a Neumann boundary condition (velocity on the

body is known).

From (i) and (ii), it can be inferred that the free-surface body intersection is a

double-node of type (b). Out of the three variables at the intersection, φ(1)
j+1, φ

(2)
n,j

and φ
(1)
n,j+1, the only unknown solved for is φ(1)

n,j+1 which is the flux on the free-

surface. This is in essence explains the double-node approach at the free-surface

body intersection. Corners of types (a) and (c) also occur in the domain, and are

treated in a similar manner.

The angle α(p) in the BIE (Equation (2.8)) is not calculated explicitly at a

corner point. It is determined instead using Equation (3.15).

3.4 Treatment of jets

In the case of high speed water-entry of hydrofoils and wedges, thin jets of high-

velocity with primarily one-dimensional flow, develop along the wetted part. These

jets are difficult to handle numerically as extremely small panels are required to

capture the shape and this results in a corresponding reduction in the time-step.

The most common approach to alleviate the numerical issues is to let the jet evolve

for a certain duration and then truncate it when a specified criteria is met.

In the current nonlinear BEM scheme, the relative angle (βR) between the free-

surface and the wetted part of the body is used as the truncation criteria. Figure 3.3

illustrates the truncation process of the jet region. Once the angle βR reaches the

threshold limit βi, which is specified a priori, the first free-surface panel adjacent to

the body is cut off. A new free-surface panel is created joining the two surfaces such
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that the relative angle is greater than the threshold angle. The value of the velocity

potential at the intersection of the new free-surface panel with the body surface is

obtained via cubic interpolation of the potentials on the body-surface. The range

of the threshold limit for the relative angle is based on the self-similar solution of

[Dobrovol’skaya 1966; 1969] and is chosen to be in the range π/15 ≤ βi ≤ π/9. This

model is in concept similar to that used by [Zhao and Faltinsen 1993] where the last

panel is aligned perpendicular to the body surface.

BEFORE TRUNCATION AFTER TRUNCATION

βR

βi

Free-surface SF

Body surface SB

Truncated free-surface

βR : relative angle between surfaces

βi : threshold angle

Figure 3.3: Details of jet truncation/cut-off model
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3.5 Time-stepping Scheme

The time-stepping scheme forms an integral part of the numerical scheme. A

fourth-order Runge-Kutta (RK4) scheme is used to integrate the time-dependent

kinematic (KFSBC) and dynamic (DFSBC) free-surface boundary conditions. The

free-surface boundary conditions expressed in the Lagrangian form are

KFSBC :
Dx

Dt
= ∇φ = u

DFSBC :
Dφ

Dt
=

1

2
|∇φ|2 − gy











x ∈ SF(t) (3.17)

3.5.1 Initial value problem

Let an initial value problem be specified as [Hildebrand 1974]

ẏ = f(t, y), y(t0) = y0 (3.18)

The fourth-order Runge-Kutta method leads to the following equations:

y(m+1) = y(m) +
h

6
(k0 + 2k1 + 2k2 + k3) + O(h5)

with, k0 = hf
(

t(m), y(m)
)

k1 = hf
(

t(m) + 0.5h, y(m) + 0.5k0

)

k2 = hf
(

t(m) + 0.5h, y(m) + 0.5k1

)

k3 = hf
(

t(m) + h, y(m) + k2

)

(3.19)

In eqn. (3.19), h = ∆t is the spacing or size of the time-step such that t(m+1) =

t(m) + h; superscripts (m) and (m+1) represent the values of the function at t = t(m)

and t = t(m+1) respectively; k0, k1, k2 and k3 are the slopes or derivatives evaluated

at each intermediate level of the RK4 scheme.

3.5.2 Free-surface updating

Updating the free-surface location and the velocity potential on it requires the

application of the RK4 scheme to both the KFSBC and DFSBC. At a given instant
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of time t = t(m), S(m)
F ≡ SF

(

t(m)
)

represents the free-surface and, φ(m) ≡ φ
(

x(m), t
)

,

with x(m) =
(

x(m), y(m)
)

∈ S
(m)
F , represents the corresponding velocity potential.

The following steps explain in detail the procedure required to obtain the free-surface

characteristics at time t = t(m+1) = t(m) + h.

STEP (1) : time t = t(m)

(i) Solve the BVP to obtain the normal velocity φ(m)
n on the free-surface.

Based on φ(m)
n and φ(m)

s , obtain the horizontal and vertical components

of the velocity u(m) =
(

φ(m)
x , φ(m)

y

)

using the coordinate transformation

φ(m)
x = φ(m)

s n(m)
y + φ(m)

n n(m)
x

φ(m)
y = −φ(m)

s n(m)
x + φ(m)

n n(m)
y

(3.20)

φ(m)
s is the tangential component of the velocity on the free-surface and

is obtained through a second-order finite difference scheme based on the

arc-length. n(m) = (n(m)
x , n(m)

y ) is the normal vector on S(m)
F .

(ii) Evaluate the derivatives k0x, k0y and k0p, where

k0x = ∆tφ(m)
x

k0y = ∆tφ(m)
y

k0p = ∆t

(

1

2

∣

∣u(m)
∣

∣

2 − gy(m)

)

(3.21)

(iii) Obtain the characteristics of the free-surface at time t(i) = t(m) + 0.5∆t

using the derivatives from sub-step (ii)

x(i) = x(m) + 0.5k0x

y(i) = y(m) + 0.5k0y

φ(i) = φ(m) + 0.5k0p

(3.22)

where superscript (i) denotes the values at the first intermediate step of

the RK4 scheme.
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STEP (2) : time t(i) = t(m) + 0.5∆t

(i) Repeat sub-step (i) of STEP (1) for the free-surface S(i)
F ≡ SF

(

t(i)
)

with velocity potential φ(i).

(ii) Evaluate the derivatives k1x, k1y and k1p, where

k1x = ∆tφ(i)
x

k1y = ∆tφ(i)
y

k1p = ∆t

(

1

2

∣

∣u(i)
∣

∣

2 − gy(i)

)

(3.23)

(iii) Obtain the characteristics of the free-surface at time t(ii) = t(m) +

0.5∆t using the derivatives from sub-step (ii)

x(ii) = x(m) + 0.5k1x

y(ii) = y(m) + 0.5k1y

φ(ii) = φ(m) + 0.5k1p

(3.24)

where superscript (ii) denotes the values at the second intermediate

step of the RK4 scheme.

STEP (3) : time t(ii) = t(m) + 0.5∆t

(i) Repeat sub-step (i) of STEP (1) for the free-surface S(ii)
F ≡ SF

(

t(ii)
)

with velocity potential φ(ii).

(ii) Evaluate the derivatives k2x, k2y and k2p, where

k2x = ∆tφ(ii)
x

k2y = ∆tφ(ii)
y

k2p = ∆t

(

1

2

∣

∣u(ii)
∣

∣

2 − gy(ii)

)

(3.25)

(iii) Obtain the characteristics of the free-surface at time t(iii) = t(m) +∆t
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using the derivatives from sub-step (ii)

x(iii) = x(m) + k2x

y(iii) = y(m) + k2y

φ(ii) = φ(m) + k2p

(3.26)

where superscript (iii) denotes the values at the third intermediate

step of the RK4 scheme.

STEP (4) : time t(iii) = t(m) + ∆t

(i) Repeat sub-step (i) of STEP (1) for the free-surface S(iii)
F ≡ SF

(

t(iii)
)

with velocity potential φ(iii).

(ii) Evaluate the derivatives k3x, k3y and k3p, where

k3x = ∆tφ(iii)
x

k3y = ∆tφ(iii)
y

k3p = ∆t

(

1

2

∣

∣u(iii)
∣

∣

2 − gy(iii)

)

(3.27)

(iii) Obtain the characteristics of the free-surface at time t(m+1) = t(m) +

∆t

x(m+1) = x(m) +
1

6

(

k0x + 2k1x + 2k2x + k3x

)

y(m+1) = y(m) +
1

6

(

k0y + 2k1y + 2k2y + k3y

)

φ(m+1) = φ(m) +
1

6

(

k0p + 2k1p + 2k2p + k3p

)

(3.28)

This represents the final step of the RK4 scheme and all the free-

surface characteristics are obtained at the end of the interval.

The solution is carried over in time by repeating STEPS (1) through (4) for

each time interval. It is important to note that the BVP/BEM is solved at each of

the four steps of the RK4 scheme.
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Figure 3.4: Fourth-order Runge-Kutta scheme for free-surface time-stepping
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3.5.3 Stability of Time-integration

It is a formidable task to attempt a stability analysis of the fourth-order Runge-

Kutta scheme applied to a fully nonlinear free-surface problem and is also beyond

the scope of the current work. The current nonlinear scheme monitors the ratio

max

( |∇φ|
∆s

)

∆t = C0 (3.29)

during the course of the simulation for a fixed value of the time-step size ∆t.

In Equation (3.29), ∇φ and ∆s are the velocity and panel length on the free-

surface respectively. C0 is the Courant number typically < 1. It was found that a

value of C0=0.25 was needed to obtain a stable solution.

3.5.4 Free-surface regridding

In the Mixed-Eulerian-Lagrangian method, the free-surface consists of a set of

present Langrangian markers or particles. The motion of these markers is tracked as

a part of the evolution of the free-surface based on the kinematic and dynamic free-

surface boundary conditions. For nonlinear free-surface simulations, these particles

have a tendency to accumulate in regions of high velocity gradient and this can lead

to instabilities. One way to avoid the clustering of the particles is to redistribute

them along the free-surface, based on a specified criteria of equal/graded arc-length

or curvature, at regular intervals of time during the simulation. The redistribution

or remeshing of the Lagrangian markers involves cubic-splines and is based on a

parametric representation of the free-surface. The key to a good remeshing scheme

is the choice of a proper parameter to represent the free-surface. The details of the

remeshing scheme are presented in Appendix B.
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3.5.5 Forces and Moments

The forces and moments are calculated by integrating the pressure over the body

surface. For a body SB

F =

∫

SB

Pnds (3.30)

M =

∫

SB

P (r × n)ds (3.31)

where F and M are vector quantities representing the forces and moments with

respect to an inertial coordinate system O(x, y, z) as shown in Figure 3.5.5. P is

the pressure, n = (nx, ny, nz) is the normal vector (positive into the body surface),

r = (x, y, z) is the position vector representing a point on the body surface.

x

y

z

O

SB : Wetted body surface

SF : Free-surface SF : Free-surface

n

r

Figure 3.5: Body:Position vector and unit normal

For a 2D body, the forces and moments reduce to the following components

Component of force F in the x-direction, Fx =

∫

SB

Pnxds

Component of force F in the y-direction, Fy =

∫

SB

Pnyds

Component of moment M about the z-axis, Mz =

∫

SB

P (xny − ynx)ds

(3.32)
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The pressure on the body surface is obtained from the Bernoulli’s equation

P

ρ
= −∂φ

∂t
− 1

2
|∇φ|2 − gy (3.33)

The critical part of expression for the pressure is the estimation of the time

derivative
∂φ

∂t
. While calculating the pressure on the body it is also important to

note that the body surface changes with time and also due to re-gridding. Taking

these factors into consideration, we have

δφ

δt
=
∂φ

∂t
+ Vg · ∇φ (3.34)

Vg is the local grid velocity of the body surface and represented as

Vg =

(

δx

δt
,
δy

δt

)

(3.35)

From (3.33) and (3.34), we have

P

ρ
= −δφ

δt
+ Vg · ∇φ− 1

2
|∇φ|2 − gy (3.36)

The derivatives
δφ

δt
,
δx

δt
and

δy

δt
are calculated as a part of the fourth-order

Runge-Kutta scheme (see [Kim and Hong 2000])

δf(t0 + ∆t)

δt
=

1

4∆t

[

−2f(t0) − 4f (1)

(

t0+
∆t

2

)

−4f (2)

(

t0+
∆t

2

)

+10f(t0+∆t)

]

− 1

2

δf(t0)

δt

(3.37)

where f can be either φ, x or y. The scheme utilizes the mid-step values of the

fourth-order Runge-Kutta scheme with superscripts (1) and (2) indicating the first

and second mid-steps respectively.

49



Chapter 4

Validation Studies

Up to this point, the basic mathematical and numerical concepts needed to

solve a general free-surface IBVP have been presented. This chapter presents the

application of these concepts to a set of problems specifically chosen to validate the

numerical building blocks of the scheme.

4.1 Piston Wave-maker

This problem simulates the transient free-surface waves generated in a numerical

wave-tank. A piston-type wave-maker, at one end of the wave-tank, is subject to a

sinusoidal motion to generate waves starting from a state of rest.

4.1.1 Formulation

The fluid domain Ω(t) corresponding to a numerical wave tank with a piston

wave-maker is as shown in Figure 4.1. SW(t) represents the instantaneous position

of the wave-maker and has a sinusoidal horizontal translation of the form

xp(t) = −A
2

cos(ωt) (4.1)

where A is the amplitude or stroke of the piston wave-maker and ω is the circular

frequency of the sinusoidal motion. SF(t) is the instantaneous free-surface, SB(t) is

the impervious bottom surface and SD is the downstream wall of the wave tank.

• Governing Equation

∇2φ(x, t) = 0, x ∈ Ω(t) (4.2)
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with Γd(t) = SF(t) and Γn(t) = SW(t) ∪ SB(t) ∪ SD.

• Boundary Condition on Wave-maker SW(t)

Along the piston surface, a kinematic boundary condition of the form

∇φ · n = up(t), x ∈ SW(t) (4.3)

is applied, where n is the unit surface normal pointing out of the fluid domain. From

the sinusoidal motion of the piston as specified by Equation (4.3), we have

up(t) = ẋp(t) =
A

2
ω sin(ωt) (4.4)

x

y

A

xp

SW(t)

SF(t)

SB(t)

SDΩ(t) h

Lt

Figure 4.1: Piston Wavemaker : Fluid domain and corresponding boundaries, h:
wave tank depth, A: Piston stroke, Lt: Mean length of wave-tank

• Boundary Condition on SB(t), SD

Both the bottom and downstream surfaces are assumed to be no-flux surfaces and

the following kinematic boundary condition is applied

∇φ · n = 0, x ∈ SB(t), SD (4.5)
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• Initial Conditions

At time t = 0, the relevant initial conditions are

φ(x, 0) = 0

η(x, 0) = 0







x ∈ SF(t) (4.6)

It can be observed from the sinusoidal motion, as specified by Equation (4.1),

that the wave-maker is at a position of extreme displacement of xp(0) = −A
2

at

time t = 0. This arrangement is introduced to prevent an impulsive start to the

simulation with non-zero velocities at the wave-maker.

4.1.2 Results

[Lin 1984] developed a numerical scheme based on the Cauchy-integral formula-

tion, along with an MEL approach, to simulate this problem. The results from Lin’s

scheme were found to agree well with the experimental observations - see [Greenhow

and Lin 1983] comparing the numerical and experimental free-surfaces generated as

a result of an impulsive start of the wave-maker. The numerical results presented in

[Lin 1984] are used as a basis for validating the current algorithm.

For the simulation, a wave tank of depth h = 1.0 is chosen with a mean length

of Lt = 10h. The piston wave-maker placed at the left end of the tank has a stroke

A = 0.1h and oscillates with a period of T = 4.0 (ω = 0.5π). These quantities, in

non-dimensional form, are consistent with the parameters specified in [Lin 1984].

Figure 4.2 compares the transient wave elevations between [Lin 1984] and the

BEM scheme at t = 2T and t = 4T (the intermediate steps are not presented

for clarity, but shown separately in Figure 4.3). The simulations are performed

with number of panels on the free-surface NF = 200 and time steps ∆t = 0.02T

and ∆t = 0.01T . The overall comparison between the two methods is good and a

detailed analysis of the wave-maker is not undertaken as its sole purpose is to verify

the accuracy of the BEM scheme.
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Figure 4.2: Piston wave-maker : Comparison of wave elevations between [Lin 1984]
and BEM scheme (a) ∆t/T = 0.02, (b) ∆t/T = 0.01; Ā = 0.1, T = 4.0, NF = 200;
η̄ = η/h : wave elevation, x̄ = x/h
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Figure 4.3: Piston wave-maker : Wave elevations at (a) t/T = 1.0,(b) t/T = 2.0,(c)
t/T = 3.0,(d) t/T = 4.0, ∆t/T = 0.02, Ā = 0.1, NF = 200; η̄ = η/h : wave elevation,
x̄ = x/h
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4.2 Fifth-order Gravity Waves

The accuracy with which a scheme preserves the shape of a nonlinear wave of

permanent form, propagating through a periodic domain, has often been used as a

benchmark to validate a numerical algorithm (see [Grilli et al. 1989]).

The domain is initialized with a periodic nonlinear wave obtained from the fifth-

order gravity wave theory of [Fenton 1985]. Appendix C provides a detailed deriva-

tion of the analytical expressions for the wave elevation and velocity potential over

the entire physical domain. The numerical scheme is allowed to propagate the initial

wave with inflow and outflow boundary conditions specified at the extents of the nu-

merical domain. These boundary conditions are readily available from the analytical

expressions for the velocity potential. At the end of a given period of simulation, a

numerical scheme should essentially conserve all the properties of the nonlinear wave

and preserve its shape. This can easily be verified with the analytical wave-form at

the same instant of time.

4.2.1 Formulation

The fluid domain Ω(t) and its corresponding boundaries are as shown in Figure

4.4. SF(t) represents the instantaneous position of the free-surface, SU(t) and SD(t)

are the upstream and downstream periodic boundaries of the domain, and SB(t)

represents an impervious bottom surface.

• Governing Equation

∇2φ(x, t) = 0, x ∈ Ω(t) (4.7)

with Γd(t) = SF(t) and Γn(t) = SU(t) ∪ SB(t) ∪ SD(t).

• Boundary Condition on SU(t), SD(t)

SU(t) and SD(t) represent the periodic inflow and outflow wave boundaries respec-
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SD(t)SU(t)

SB(t)

L

ds

n

SF(t)

Ω(t)

x

y

uw

vw

Figure 4.4: Fifth-order Stokes Wave : Fluid domain and corresponding boundaries,
d: water depth, L: wavelength, y : wave elevation, s = d+ y

tively. In the modeling of the propagation of the Stokes waves, kinematic boundary

conditions of the form

SU(t) : ∇φ · n = −uw

SD(t) : ∇φ · n = +uw

(4.8)

are imposed on these surfaces. Here n is the unit surface normal positive outward.

uw is the horizontal velocity component corresponding to a fifth-order Stokes wave

and has the form

uw = u∗
w

5
∑

m=1

ǫmmam cosh (mks) cos (mθ) (4.9)

where s = d + y and θ = 2π

(

x

L
− t

T

)

with T being the wave period and L the

wavelength; ǫ =
kH

2
is the dimensionless expansion parameter withH being the wave

height and k =
2π

L
the wave-number; a1, a2 · · · am are coefficients that are functions

of ǫ and
d

L
; u∗

w is the dimensional scaling velocity. This form is consistent with the

fifth-order gravity wave theory of [Fenton 1985]. For brevity only the functional form
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is presented here and a more detailed explanation of the terms in Equation (4.9) is

presented in Appendix C.

• Boundary Condition on SB(t)

The bottom surface is assumed to be immovable and impervious and the correspond-

ing boundary condition is

∇φ · n = 0, x ∈ SB(t) (4.10)

• Initial Conditions

At time t = 0, i.e., at the beginning of the simulation, the following conditions are

applied on the free-surface

φ(x, 0) = φw(x, 0)

η(x, 0) = ηw(x, 0)







x ∈ SF(t) (4.11)

where φw and ηw are the velocity potential and wave elevation corresponding to a

fifth-order Stokes wave. The functional forms of φw and ηw are described in detail

in Appendix C.

4.2.2 Results

A wave with wave length L = 65 m, wave height H = 5.0 m, wave period

T = 6.38 s and water depth d = 20 m

(

d

gT 2
= 0.05,

H

gT 2
= 0.0125,

H

L
= 0.0769

)

is

chosen to simulate the propagation of periodic gravity waves. At the beginning of the

simulation, the characteristics of the wave as obtained from analytical expressions of

[Fenton 1985] are specified as initial conditions on the free-surface. The BEM scheme

is then allowed to propagate the wave based on the boundary conditions specified

on the upstream and downstream surfaces, SU(t) and SD(t) respectively.

A comparison between the analytical (ηw, [Fenton 1985]) and numerical (ηn)

wave profiles is shown in Figure 4.5. The simulation is carried out for NF = 240 and

NT = 500 linear BEM panels with a time step ∆t = 0.025T . Here, NF is the total
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number of panels on the free-surface SF(t), and NT is the total number of panels over

the entire BEM domain ST ≡ SF ∪SD ∪SB ∪SU. The scheme is allowed to propagate

the waves for a total simulation time of 5.0T , and Figure 4.5 compares the analytical

and numerical wave profiles between t = 4.0T and t = 4.8T at steps of 0.2T . It can

be observed that the BEM scheme is able to preserve the form and characteristics

of the initial wave profile over long periods of time.

Convergence Study

The spatial and temporal convergence characteristics of the scheme are stud-

ied by comparing the analytical and numerical drifts of a Lagrangian fluid parti-

cle P[x(t), y(t)], placed at the intersection of the free-surface SF and the upstream

boundary SU. To determine the analytical drift (particle trajectory), the system of

equations
Dx

Dt
= uw(x, y, t) ;

Dy

Dt
= vw(x, y, t) (4.12)

is numerically integrated using a fourth-order Runge-Kutta scheme. Here, uw and vw

respectively are the horizontal and vertical components of the wave velocity (based

on analytical expressions, [Fenton 1985]).

The trajectory and time-history of the fluid particle P and its convergence to-

wards the analytical values are shown in Figure 4.7 and Figure 4.6 respectively.

These figures summarize the results of simulations performed over a duration of

5.0T for NF = 30, 60, 120, 240 (NT = 75,150,300,500) and ∆t = 0.0125T , 0.025T . To

quantify the convergence characteristics of the BEM scheme, the error between the

analytical and numerical particle trajectories is compared at the end of the simu-

lation, t = 5.0T , for different levels of discretization and time-steps. It is observed

that (see Figure 4.8) for ∆t = 0.0125T and ∆t = 0.025T , |ǫx(t)| ≈ O(∆x̄1.1) and

|ǫy(t)| ≈ O(∆x̄1.25). Here, ǫx(t) and ǫy(t) are the errors between the analytical and

numerical x̄(t) ≡ x(t)/L and ȳ(t) ≡ y(t)/L respectively, ∆x̄ =
1

NF

is a measure of

the panel length.
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Conservation of Mass

It is important that the BEM scheme conserve mass and for free-surface simula-

tions this property can be quantified by monitoring the area under the free-surface

ηarea (ideally ηarea = 0). Figure 4.9 illustrates the time-history of η̄area = ηarea/L
2

for different levels of discretization. The maximum error in η̄area is observed to be

3 × 10−2% and 6.5 × 10−4% for NF = 30 and NF = 240 respectively.

0 0.5 1 1.5

­0.04

­0.02

0

0.02

0.04

x̄

η̄ n
,η̄

w

t = 4.0T

t = 4.8Tη̄n η̄w

Figure 4.5: Comparison of numerical and analytical wave elevations between t =
4.0T and t = 4.8T at steps of 0.2T ; x̄ = x/L, η̄w = ηw/L, η̄n = ηn/L : ηn :
numerical wave elevation, ηw : analytical wave elevation; BEM characteristics :
Time step ∆t/T = 0.025, Number of panels on the free-surface, NF = 240
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Figure 4.6: Time history : Convergence of the trajectory of a fluid particle
P[x(t), y(t)] at the upstream boundary with increase in NF, number of panels on
the free-surface: (a) NF = 30, (b) NF = 60, (c) NF = 120, (d) NF = 240, (e) Analyt-
ical trajectory; Time step ∆t/T = 0.025; x̄ = x/L, ȳ = y/L, t̄ = t/T
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ȳ

(a)

(b)

(c)

(d)

(e)

Figure 4.7: Convergence of the trajectory of a fluid particle P[x(t), y(t)] at the
upstream boundary with increase in NF, Number of panels on the free-surface : (a)
NF = 30, (b) NF = 60, (c) NF = 120, (d) NF = 240, (e) Analytical trajectory; Time
step ∆t/T = 0.025; x̄ = x/L, ȳ = y/L, t̄ = t/T
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∆t = 0.0125T (− ◦ −) ǫx(t) : error in x(t),(- -) ǫy(t) : error in y(t),∆x̄ = 1
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Figure 4.9: Variation of the area under the free-surface with time; Convergence with
increase in NF, number of panels on the free-surface:(a) NF = 30, (b) NF = 60, (c)
NF = 120, (d) NF = 240; η̄area = ηarea/L

2 : area under the free-surface; Time step
∆t/T = 0.025
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4.3 Water-entry of Wedge Sections

The water-entry of two-dimensional rigid bodies was pioneered by [Von Karman

1929] and [Wagner 1932], who introduced it in the context of the impact on seaplanes

during landing. Since then the topic has been widely studied leading to several ele-

gant mathematical solutions along with numerical and experimental investigations.

A review of the research work on water-entry problems is given in [Korobkin and

Pukhnachov 1988].

Most of the development in this field has been based on potential theory as

the effects of viscosity are often negligible at the usual high speeds of entry. An

assumption that has long dominated the mathematical development and numerical

implementation is that of flow self-similarity. This assumption is valid as long as

the water entry speed is constant and high enough to neglect the effects of gravity,

and the body is of infinite extent. An explicit solution was given by [Mackie 1962]

for the linearized water-entry problem. Later, [Dobrovol’skaya 1969] and [Hughes

1972; 1973] derived similarity solutions with fully nonlinear and exact boundary

conditions. Unlike [Mackie 1962], the solutions of [Dobrovol’skaya 1969] were

not expressed explicitly and had to be solved numerically. [Dobrovol’skaya 1966]

presented a numerical method to solve the nonlinear singular integral equations

based on which results were presented in [Dobrovol’skaya 1969] for deadrise angles

larger than 30◦. [Zhao and Faltinsen 1993] later obtained numerical results based

on the solution of [Dobrovol’skaya 1969] for deadrise angles in the extended range

of 4◦ - 81◦.

The similarity solutions of [Dobrovol’skaya 1969, Zhao and Faltinsen 1993] ex-

press the whole range of nonlinearities of the free-surface interaction - the most

critical of them being the analytical description of the thin jet flow. A common

observation in any impact scenario is the formation of a very thin jet than runs up

along the body surface. In a real fluid the thin jet eventually disappears as spray un-
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der the influence of surface tension [Greenhow and Lin 1983, Imas 1998]. Since the

formation of spray cannot be accounted for in a mathematical setting, the similarity

solutions retain the entire extent of the jet, and solve for the contact angle between

the jet and the wedge surface. The contact angle varies from 12.88◦ (deadrise angle

81◦) to 0.04◦ (deadrise angle 4◦). An aspect of the jet-flow revealed by the similarity

solution is that the pressure in the jet is nearly atmospheric and its influence on the

overall flow characteristics is negligible. The analytical contact angle and the negli-

gible gage pressure inside the jet has been exploited by many numerical methods to

develop a “cut-off ” model.

The thin jet flow and the small contact angle often leads to numerical errors at

the body free-surface intersection. [Zhao and Faltinsen 1993] in their nonlinear BEM

scheme truncated the jet at the spray root, once a critical contact angle is reached,

to obviate the numerical issues. In their scheme, a new panel is introduced at the

spray root perpendicular to the body surface to close the BEM domain (this new

panel or contact surface was explicitly taken into account in the BIE formulation).

Subsequently many variations of the cut-off model have been introduced, see [Kihara

2004], [Battistin and Iafrati 2004] and [Sun and Faltinsen 2007] for water-entry of

wedges. A similar approach was employed by [Tsai and Yue 1993] to truncate the

jet formed along a horizontally moving surface-piercing plate.

The aim of this part of the thesis are the following:

(i) Apply the BEM scheme to the water-entry of symmetric wedges for different

deadrise angles.

(ii) Compare the free-surface elevation and the pressure predicted on the wetted

part of the wedge with the self-similar solutions of [Dobrovol’skaya 1969, Zhao

and Faltinsen 1993]. This is done to validate the numerical aspects of the

scheme, specifically the jet cut-off scheme described in Section 3.4 and the

calculation of pressure on the wetted boundary (see section 3.5.5).
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4.3.1 Initial Boundary Value Problem

The fluid domain Ω(t) along with its boundaries representing the water-entry

of a wedge is shown in Figure 4.10. Also shown in Figure 4.10 are the parameters

defining the geometry of the wedge section, where αw is the included wedge angle

and β is the deadrise angle. β and αw are related by the relation β = (π − αw)/2.

SWB(t) represents the instantaneous wetted boundary of the wedge, moving ver-

tically downward with a velocity Vw. S∞ is the far-field boundary or more appro-

priately a truncated numerical boundary placed far enough so as not to reflect any

free-surface disturbances reaching it.

• Governing Equation

∇2φ(x, t) = 0, x ∈ Ω(t) (4.13)

with Γd(t) = SF(t) and Γn(t) = SWB(t) ∪ S∞(t).

• Boundary Condition on SWB(t)

Along the wetted boundary of the wedge, a kinematic boundary condition of the

form

∇φ · n = V · n, x,n ∈ SWB(t) (4.14)

is applied, where n is the unit surface normal pointing out of the fluid domain. For

the vertical entry case V = (0,−Vw)

• Boundary Condition on S∞

The truncated boundary is treated as a wall leading to the kinematic boundary

condition

∇φ · n = 0, x,n ∈ S∞ (4.15)
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• Initial Conditions

In the previous two problems that did not involve a surface-piercing body, initial

conditions were only needed for the free-surface. For this case, in addition to the

initial conditions on the free-surface, the initial geometry of the body is also needed.

For the body surface, a fraction of the wedge is assumed to be immersed initially,

as shown in Figure 4.10. The apex of the wedge A is at a distance δi below the

undisturbed free-surface level. Note that since the velocity of entry (Vw) is known a

priori, the initial immersion δi can also be expressed in terms of a time parameter,

t0 = δi/Vw.

For the free-surface, its position and the corresponding velocity potential are

assumed to be known at t = 0. Two types of initial conditions can be specified (see

Figure 4.10)

(i) φ = 0, η(x, 0) = 0 (4.16)

(ii) φ = φ0(x, η0), η(x, 0) = η0 (4.17)

where φ0 and η0 are obtained from the linearized water-entry theory of [Mackie

1962; 1969] for small included angles. An initial free-surface shape obtained from

the modified Wagner-theory of [Mei et al. 1999] is used as an initial shape for large

included angles.

4.3.2 Results

All the results presented in this section pertain to the symmetric water-entry

of wedge sections. The main parameters that are used in the numerical simulation

are shown in Figures 4.10 and 4.11. Note that even though a symmetric case is

considered, no assumptions of symmetry are made in the numerical or mathematical

formulation. The scheme can easily be applied to an asymmetric case.

As shown in Figure 4.11, NF represents the total number of elements on the

free-surface SF(t) (including both sides of the free-surface), NWB the total number
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Figure 4.10: Water-entry of wedge sections : Fluid domain and corresponding bound-
aries, parameters defining the geometry of the wedge and initial conditions
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of elements on the combined wetted wedge surface, and N∞ the total number of

elements on the far-field boundary. In a theoretical framework, a self-similar flow

(in the absence of gravity) has no physical length scale. However, to terminate the

numerical solution, an arbitrary characteristic length (cw) is chosen representing the

wetted length along the wedge. cw is chosen to be 6′′=0.1524 m. te is the time at

which the wetted length of the wedge equals cw. s represents the arc-length along

the wetted boundary of the wedge with s=0 at the apex and s=sw(t) at the body

free-surface intersection. At time t=te, sw(t)=cw.

Effect of time-step and number of panels

A representative case showing the effect of the time-step ∆t on the free-surface

elevation is shown in Figure 4.12, for a wedge with an inclined angle αw=18◦. The

free-surface elevation converges quite well with a change in size of the time-step and

no discernible difference is seen between ∆t=1e-5 s and ∆t=5e-6 s (as seen in the

close-up of jet region - Region AA). The largest value of ∆t=1e-4 s is chosen to keep

the Courant number C0 below 0.25. Figure 4.13 and 4.14 respectively show the effect

of the time-step and the number of panels NWB on the pressure predicted by the

scheme on the wetted part of the boundary. In both the cases the results converge

well. For all these NF is chosen to 125, a value found to be sufficient through a

convergence study.

Similarity Solution

Figure 4.15 shows the free-surface elevation predicted by the scheme at different

stages of entry in the absence of gravity (g=0). The initial condition with a part of

the wedge immersed initially corresponds to the time t=0.0 s. As we have neglected

gravity, the numerical solution should conserve the important aspect of self-similarity

of the flow. Figure 4.16 illustrates this aspect, expressing the free-surface elevations

in terms of the similarity variables x/(Vwt) and y/(Vwt). The scheme is able to
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attain a state of self-similarity very quickly and sustain it over the entire course of

the simulation (the free-surface elevations beyond t=0.02s all overlap). Figure 4.17

shows the free-surface elevation at different stages of entry for αw=60◦ and αw=90◦.

For both the cases, the scheme is able to accurately track the fast moving jet formed

along the wetted part of the wedge.

Figure 4.18 shows the pressure distribution along the wetted boundary of the

wedge at different stages of entry (pressures are shown only on one side of the wetted

boundary). The pressure coefficient Cp is defined as

Cp =
P − Patm

0.5ρV 2
w

(4.18)

where P is the pressure on the body surface, Patm the atmospheric pressure and ρ

the density.

A comparison with the self-similar solution of [Dobrovol’skaya 1969] is shown

in Figure 4.19 and 4.20. Note that the pressure on the wetted side is expressed as a

function of the similarity variable y/(Vwt). In all the cases, the agreement between

the self-similar solution of [Dobrovol’skaya 1969] and the predicted pressures is

excellent. The scheme also predicts equally well the fact that the pressure inside the

jet region is almost atmospheric or Cp = 0.

Effect of Froude Number

The results presented upto this point neglect the effects of gravity, which is

consistent with a self-similar assumption. One of the aims of this research work is

to address the effects of the Froude number on the free-surface characteristics. To

this end, a Froude number is defined as

Fnc =
Vw√
gc

(4.19)
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where Vw is the velocity of entry, g is the acceleration due to gravity and c is the

chord-length of the wedge.

Note

The dynamic free-surface boundary condition is written as

φt +
1

2
|∇φ|2 + gy = 0 (4.20)

or in the non-dimensionalized form

φ∗
t +

1

2
|∇∗φ∗|2 +

y∗
F 2

nc

= 0 (4.21)

based on a velocity scale Vw and length scale c. The superscript ∗ indicates the

non-dimensional values. As Fnc increasess, the effect of the hydrostatic component

becomes negligible.

From Equation 4.19, it can easily be seen that g=0 would correspond to an

infinite Froude number (Fnc=∞). Figure 4.21 shows the effect of the Froude number

on the free-surface elevation predicted by the scheme. The free-surface elevation is

seen to converge towards the self-similar solution with an increase in the Froude

number. It can be observed from the results that the Fnc=3.0 case is practically

equivalent to the self-similar solution. This is consistent with the results presented

in [Yim 1971] in the case of a symmetric entry of a wedge with linearized boundary

conditions.

A similar conclusion can be drawn from Figures 4.22 through 4.24, which show

the effect of the Froude numbers on the predicted pressures. The pressure on the

wedge surface is written as

P − Patm

ρ
= −φt −

1

2
|∇φ|2 − gy (4.22)

or in terms of the pressure coefficient as
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Cp =
P − Patm

1

2
ρV 2

w

= Cp,d + Cp,s (4.23)

where,

Cp,d =

(

−φt −
1

2
|∇φ|2

)

1

2
V 2

w

(4.24)

and

Cp,s =
−gy
1

2
V 2

w

(4.25)

Cp,s and Cp,d denote the hydrostatic and hydrodynamic components respectively.

Note

The hydrostatic component of the pressure is expressed as

Cp,s =
−gy
1

2
V 2

w

(4.26)

With the Froude number defined as Vw/
√
gc, we have

Cp,s =
−y

1

2
cF 2

nc

(4.27)

as Fnc → ∞ Cp,s → 0
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Figure 4.11: Number of elements on the discretized boundary, NF = total number
of elements on the free-surface SF(t) combined, NWB = total number of elements on
the combined wetted wedge surface, N∞ = total number of elements on the far-field
boundary;cw is the wetted characteristic length; s is the arc-length along the wetted
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Figure 4.12: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the time-step on the free-surface elevation predicted by the scheme. te =0.103075
s, (a) ∆t/te = 9.6e-4, (b) ∆t/te = 4.8e-4, (c) ∆t/te = 9.6e-5, (d) ∆t/te = 4.8e-5
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Figure 4.13: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the time-step on the pressures predicted by the scheme on the wetted part of the
body surface. te =0.103075 s, (a) ∆t/te = 9.6e-4, (b) ∆t/te = 4.8e-4, (c) ∆t/te =
9.6e-5, (d) ∆t/te = 4.8e-5. Cp is the pressure coefficient and s is the arc-length along
the body surface. (Note : pressures shown only on one side of the wetted boundary)
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Figure 4.14: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the number of panels on the pressures predicted by the scheme on the wetted part
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total number of panels on the wetted body surface, see Figure 4.11
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76



­0.5 0 0.5

­1

­0.5

0

0.5

= 0.000000

= 0.020000

= 0.030000

= 0.040000

= 0.050000

= 0.060000

= 0.070000

= 0.080000

= 0.090000

= 0.100000

= 0.103750

x

Vwt

y

V
w
t

αw = 18◦

t = 0

t
t
t
t
t
t
t
t
t
t

te

for all t>0.02 s

s
s
s
s
s
s
s
s
s
s
s
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m, ∆t = 5e-6 s

78



0 0.025 0.05 0.075 0.1 0.125 0.15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
p

sw(t)

αw = 18◦

t = 0.02 − 0.1s (step = 0.005 s)

te = 0.10375s

Figure 4.18: Wedge water-entry (αw = 18◦) : Pressure distribution along wetted
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of the wetted boundary).sw(t) is the instantaneous wetted length of the wedge (see
Figure 4.11). Cp is the pressure coefficient
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Figure 4.19: Wedge water-entry (αw = 18◦) : Comparison of pressure predicted
along the wetted part of the wedge with similarity solution of [Dobrovol’skaya 1969]
expressed in terms of the similarity variable y/(Vwt). Cp is the pressure coefficient
(Note : pressures shown only on one side of the wetted boundary)
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predicted along the wetted part of the wedge with similarity solution of [Dobro-
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Figure 4.21: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the Froude number Fnc on the free-surface elevation.

82



0 0.05 0.1 0.15
­0.5

0

0.5

1

1.5

2

2.5

s

(a) Fnc=1.00
(b) Fnc=2.00
(c) Fnc=3.00
(d) Fnc=∞

C
p

Figure 4.22: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the Froude number Fnc on the total pressure predicted on the wetted part of the
wedge surface; Cp is the pressure coefficient (Note pressure shown only on one side
of the wetted boundary)
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Figure 4.23: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the Froude number Fnc on the total pressure predicted on the wetted part of the
wedge surface; Cp,d is the hydrodynamic part of the pressure coefficient, as given by
Equation (4.24) (Note pressure shown only on one side of the wetted boundary)
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Figure 4.24: Wedge water-entry (αw = 18◦) : Representative case showing the effect
of the Froude number Fnc on the total pressure predicted on the wetted part of the
wedge surface; Cp,s is the hydrostatic part of the pressure coefficient, as given by
Equation (4.25) (Note pressure shown only on one side of the wetted boundary)

4.4 Summary

The intent of this chapter was to validate the numerical building blocks, which

put together are required to solve a general free-surface IBVP in a robust manner.
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This has been achieved by applying a boundary element method based on linear

isoparametric elements, along with an MEL approach, to simulate three specific

problems (i) transient waves generated by a piston type wave-maker, (ii) propagation

of nonlinear gravity waves of fixed form, and (iii) high speed water-entry of a wedge

section. In each of these cases, the results from the present method were compared

with available numerical or analytical solutions. In addition, the dependence of the

results from the present method on numerical parameters such as number of panels,

time step size, etc., were studied in detail.

Piston-type wave-maker

The BEM scheme was applied to numerically simulate a wave-tank with a piston

type wave-maker at one end. Starting from rest, transient free-surface waves were

generated through the sinusoidal motion of the piston wave-maker. The results

obtained from the current BEM scheme were found to be in good agreement with

the numerical results of Lin et al. [1984].

The body free-surface intersection point is often a source of error if not treated

in a proper way. The current scheme, with double nodes at the intersection point, is

able to simulate the generation of free-surface waves without errors (as seen in the

comparisons with Lin’s results).

Even though an elaborate study was not conducted, the results obtained here

prove the potential of the current scheme in simulating a full-fledged numerical wave-

tank. The scheme can, with ease, be extended to include a fixed or floating two-

dimensional body to simulate its interaction with an ambient wave field.

Propagation of gravity waves of fixed form

This part of the validation involved the application of the BEM scheme to the

propagation of gravity waves of permanent form. The scheme is allowed to propagate

86



a wave over a certain period of time and the numerical results were compared with

an analytical solution. The present method is able to preserve the shape of the

wave during the entire course of the simulation. This in essence proves the ability

of the method to conserve mass and validates the implementation of the fourth-

order Runge-Kutta scheme used in the time-stepping of the kinematic and dynamic

free-surface boundary conditions.

In addition to validating the present method, the analytical forms of the non-

linear wave can be used to simulate a numerical wave tank. This can be done by

replacing the piston-type wave-maker with inflow boundary conditions obtained from

the analytical expression of the horizontal velocity due to a wave.

Water-entry of wedge

The symmetric entry of a wedge is one of the most difficult problems in marine

hydrodynamics because of the strong nonlinear free-surface interaction. The present

scheme is able to simulate the water-entry and capture all the nonlinearities accu-

rately as shown in the comparison with the self-similar solutions of [Dobrovol’skaya

1969]. The key aspect is the accurate treatment of the thin jet that runs up along the

wedge surface. Along with the cut-off model, the scheme is able to capture the jet

with sufficient accuracy and also conserve the important property that the pressure

inside the region is almost atmospheric or the pressure coefficient Cp=0.

The Froude number is an important parameter in free-surface flows as it measures

the relative importance of gravitational effects over inertial effects. In the case of

water entry, the higher the speed of entry the lesser the importance of gravity. This

effect has been shown to be true through a systematic study based on the Froude

number as a parameter.
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Chapter 5

Wave-body Interaction

This chapter describes the application of the BEM scheme to study the dynamics

of two-dimensional hull-sections floating on the free-surface of the ocean. Two types

of simulations are presented (i) the prescribed or forced roll-motion of a hull-section

and (ii) transient or free-decay motion of a hull-section.

5.1 Forced Roll-motion of Hull Sections

A typical hull-section used in the two-dimensional analysis is shown in Figure

5.1. The bilge radius Rb is usually expressed in terms of the breadth B with a typical

value being 0.02B (the experimental hull-sections of both [Vugts 1968] and [Roddier

2000] have the same bilge radius). The hull-section is assumed to float at a draft

T=0.5B. The center-of-gravity is assumed to be at O, which is the origin of a fixed

coordinate system with the x-axis along the undisturbed free-surface level.

5.1.1 Initial Boundary Value Problem

For the roll-motion of a 2-D hull-section (see Figure 5.2), SF(t) and SH(t) repre-

sent the instantaneous positions of the free-surface and the hull surface respectively.

S∞ represents the far-field boundary used to truncate the infinite domain into a finite

one and placed far enough from the hull to avoid reflection of the radiated waves. n

is the unit normal to a surface, positive out of the fluid.
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Figure 5.1: Geometry and prescribed roll configuration of a round-bilge hull-section.
B : beam of hull-section; T draft (=0.5B), Rb : bilge radius (=0.02B); α0 : am-
plitude of prescribed roll motion; α(t) : instantaneous roll angle; O : origin of an
inertial coordinate system

• Governing Equation

∇2φ(x, t) = 0, x ∈ Ω(t) (5.1)

with Γd(t) = SF(t) and Γn(t) = SH(t) ∪ S∞.

• Boundary Condition on Hull SH(t)

On the hull surface SH(t),

∇φ · n = V(x, t) · n, x ∈ SH(t) (5.2)

where V(x, t) is the prescribed motion of the hull. In the case of roll, the hull is

subject to a forced sinusoidal angular motion of the form

α(t) = α0 sin(ωt) (5.3)
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Figure 5.2: Hull-section roll-motion : Fluid domain and corresponding boundaries

α0 is the amplitude of roll motion and ω is the corresponding circular frequency. In

terms of Cartesian components, the prescribed roll motion is

V(x, t) = (−yα̇, xα̇) (5.4)

• Boundary Condition on Far Field Boundary S∞

The far-field boundary S∞ is assumed to be a no-flux surface and the corresponding

boundary condition is

∇φ · n = 0, x ∈ S∞ (5.5)

Special attention is paid to place the boundary far away from the body to avoid

reflection of the waves generated by the hull motion. The simulation is terminated

before these waves reach the far-field boundary.

• Initial Conditions

At time t = 0, the relevant initial conditions are

φ(x, 0) = 0

η(x, 0) = 0







x ∈ SF(t) (5.6)
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5.1.2 Results

The BEM scheme, which has been validated through studies presented in the

previous chapter, is now applied to the roll-motion of a 2-D hull section. Two impor-

tant parameters that govern the roll-motion of a hull-section are (i) the amplitude

of roll, α0 and (ii) the Froude number

ω̃ = ω

√

B

2g
(5.7)

where ω is the frequency of roll-motion and B the breadth of the hull-section. w̃

also represents the non-dimensional frequency of roll.

The primary aim of the scheme is to ascertain the extent to which linear free-

surface boundary conditions are applicable and the results presented here focus on

this aspect. For a representative Froude number, w̃ = 0.6, the effects of nonlinearity

are analyzed for different amplitudes of roll-motion. Figure 5.3 and 5.4 illustrate

the position of the hull and the free-surface elevation for a fully nonlinear simulation

with α0 = 0.40 rad.(≈ 23◦) over a duration of 8T , where T =
2π

ω
is the period of

oscillation. Figure 5.4 also shows a few Lagrangian fluid particles that are tracked

to model the free-surface. For both the port and starboard side free-surfaces, 400

panels are used over an approximate length of 100B. The panels have a distribution

that is dense in a region close to the hull and coarse further away to increase the

computational efficiency. A time-step of ∆t = 0.01T is used for the fourth-order

Runge-Kutta scheme.

A comparison of the free-surface elevations obtained from the linear and nonlin-

ear versions of the BEM scheme is shown in Figure 5.5. For α0 = 0.05 rad (≈ 3◦),

there is no discernible difference between the linear and nonlinear free-surface ele-

vations. However, this is not true in the case of α0 = 0.40 rad (≈ 23◦), where the

effect of the nonlinear free-surface boundary conditions is clearly evident with the

presence of secondary waves of smaller wavelength. A similar observation is made
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in Figure 5.6(a), where the effect of the nonlinear free-surface boundary conditions

is shown to increase with the amplitude of roll. An alternate way to represent the

effects of nonlinearity is to scale the wave elevations with the amplitude of roll α0,

see Figure 5.6(b). Ideally for a linear phenomenon, the scaled free-surface elevations

should be identical. It can be observed that up to an amplitude of roll of α0 = 0.1

rad (≈ 6◦), the effects of nonlinearity are small.

A convergence test is also carried out to ascertain the grid-independence of the

nonlinear secondary waves seen in Figure 5.6 by varying the number of elements

on the free-surface. For NF = 400 and NF = 500, the free-surface elevations are

identical in the vicinity of the hull and the presence of the secondary waves is still

observed (see Figure 5.7). Note that the port and starboard free-surfaces each have

NF panels.

Correlation with NS2D Solver

One of the objectives of the current work was the development of an independent

potential flow model to validate the free-surface tracking algorithm of the NS2D

solver [Yu 2008]. A comparison of the free-surface elevations predicted by the two

schemes, BEM and NS2D, is shown in Figure 5.8. The overall agreement between

the predicted elevations is good. Apart from validating the free-surface algorithm,

the BEM solver can also be used to validate an inviscid version of the NS2D solver

in terms of the pressure and fluid velocities on the hull boundary. The inviscid

version is only applied to the case of round bilge hull sections. Figure 5.9 and 5.10

show a comparison of the pressures and velocities at t/T=2.75 and t/T=3.0 for an

α0=0.1 radians and ω̃=1.0. Figures 5.11 and 5.12 show a similar comparison for

α0=0.2 radians. (Note that at t/T=2.75, the angular velocity of roll, α̇=0, while at

t/T=3.0, α̇ is a maximum.). In all the cases the agreement between the two schemes

is excellent.
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Figure 5.3: Hull-section and free-surface; ω̃ = 0.6, α0 = 0.4 rad;(Note : the horizontal and

vertical scales are identical)
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Figure 5.4: Hull-section and free-surface with actual Lagrangian fluid particles; ω̃ = 0.6,
α0 = 0.4 rad; x̄ = x/B; (Note : the horizontal and vertical scales are identical)
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Figure 5.5: Comparison of linear and nonlinear free-surface elevations; (a) α0 = 0.05 rad,
(b) α0 = 0.40 rad; ω̃ = 0.6; NF = 400, Number of panels on the starboard free-surface; (Note

: the horizontal and vertical scales are not identical)
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scaled wave elevation;x̄ = x/B;NF = 400, Number of panels on the starboard
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Figure 5.7: Convergence of free-surface elevations with increase in number of panels on the
free-surface (a) NF = 100 (b) NF = 200 (c) NF = 400 (d) NF = 500; NF is the number of
panels on the starboard side free-surface (Note : the horizontal and vertical scales are not

identical)

Figure 5.8: Comparison of the free-surface elevations between BEM and NS2D ([Yu
2008]) schemes. ω̃=1.0,α0=0.1 rad.
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Figure 5.9: Comparison of pressure and velocity components between BEM and
NS2D(IN) [Yu 2008] scheme.ω̃=1.0,α0=0.1 rad,t/T=2.75; Round bilge hull-section
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Figure 5.10: Comparison of pressure and velocity components between BEM and
NS2D(IN) [Yu 2008] scheme.ω̃=1.0,α0=0.1 rad,t/T=3.00; Round bilge hull-section
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Figure 5.11: Comparison of pressure and velocity components between BEM and
NS2D(IN) [Yu 2008] scheme.ω̃=1.0,α0=0.2 rad,t/T=2.75; Round bilge hull-section
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Figure 5.12: Comparison of pressure and velocity components between BEM and
NS2D(IN) [Yu 2008] scheme.ω̃=1.0,α0=0.2 rad,t/T=3.00; Round bilge hull-section
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5.2 Transient Response of Hull-sections

This section provides a brief overview of the application of the BEM scheme to

the prediction of the transient response of hull sections in calm water. An important

difference from the forced motion case is that the acceleration of the body, hence

the velocity field and displacement of the body, is obtained as a part of the solution

instead of being specified. This involves the solution of the rigid body equations of

motion in conjunction with the external fluid forces and moments.

For a two-dimensional hull section, the relevant modes of motion are sway (trans-

lation about the x-axis), heave (translation about the y-axis) and roll (rotation about

the z-axis). The sway component is not important due to the absence of a restoring

force trying to bring the hull-section back to its equilibrium position. In the case of

roll and heave, buoyancy provides the restoring force and along with damping effects

(damping provided by viscous effects and generation of surface waves) produces an

oscillatory response. Figure 5.13 shows parameters that define the geometry of the

hull-section along with the heave/roll decay configuration. The hull-section has a

round bilge with a radius of 0.02B, where B is the breadth of the hull-section (this

geometry is identical to one used in the experimental work of [Roddier 2000]).

The rigid body equations of motion in heave can be expressed as

Mbÿb = Fy −Mbg (5.8)

and in roll as

Ioα̈ = Mz −Mbgx̄g (5.9)

where Mb is the mass of the body, Io is the mass-moment of inertia about the origin

O. Fy is the y-component of the fluid force and Mz is the roll-component of the fluid

force. ÿb is the heave acceleration while α̈ is the roll angular acceleration. The above

equations are simplified forms of the generalized rigid body equations of motion (see

[Abkowitz 1969, Roddier 2000] for the complete set of equations).
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The external fluid forces (in the case of heave, Fy) and moments (for roll, Mz)

on the body can be obtained by integrating the pressure over the body surface. In

terms of the pressure

P = −ρ
(

∂φ

∂t
+

1

2
|∇φ|2 + gy

)

(5.10)

Fy and Mz can be expressed as

Fy =

∫

SB

PnydS (5.11)

Mz =

∫

SB

P (xny − ynx)dS (5.12)

where SB is the wetted body surface, n = (nx, ny) and x = (x, y) respectively are

the normal vector and position vector on the body surface (the coordinate system is

identical to that shown in Figure 5.13).

It can be observed from the equations of motion that its solution is directly

related to the solution of
∂φ

∂t
≡ φt. The mode decomposition method (see [Vinje and

Brevig 1981]) is used to decompose the total acceleration field into its components.

For heave, the decomposed acceleration field is expressed as

φt = ÿbϕ1 + ϕ4 (5.13)

and, for roll

φt = α̈ϕ2 + ϕ4 (5.14)

where ϕ1 and ϕ2 are related to the unit body accelerations in heave and roll respec-

tively, and ϕ4 is related to the velocity field and generation of surface waves. The

solution of the different modes is obtained by solving a BIE for each mode of the

acceleration based on the method presented in [Tanizawa 1995].

5.2.1 Results

The scheme is applied to predict the transient response of a hull-section and to

measure its natural frequency. In the case of heave, the hull is displaced vertically
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by an amount yo/B = 0.125 and the resulting heave motion is predicted by solving

Equation (5.8). The value of yo/B = 0.125 is chosen to make a comparison with

experimental results of [Roddier 2000].

Figure 5.14 shows the instantaneous position of the hull-section in heave, where

t = 0.0 represents the initially displaced position. The dashed line represents the

equilibrium draft (T=0.5B) about which the hull-section oscillates. A comparison

of the heave response predicted by the BEM scheme with the experimental and in-

viscid/viscous FSRVM results of [Roddier 2000] is shown in Figure 5.15. On the

whole, the response predicted by the current scheme agrees well with the experimen-

tal/numerical results. The heave response of the hull-section has characteristics of a

lightly damped spring-mass system as shown in Figure 5.15. The logarithmic decay

of the heave maxima predicted by the BEM scheme agrees well with the experi-

mental results even though the predicted natural period is slightly higher compared

to the experimental value. The primary reason for a good correlation between the

inviscid BEM and experimental results is that for heave decay the damping effect

of viscosity is negligible compared to the damping effect provided by the radiated

free-surface waves. Along with the logarithmic decay characteristics predicted by the

BEM scheme, Figure 5.15 shows those obtained from the NS2D(IN) and NS2D(VS)

solvers. The results obtained from all the three solvers are identical.

Initial tests for predicting the roll decay motion showed that the wave damping

was negligible and the scheme sustained the roll motion for a long period of time,

i.e., predicted a much lower natural frequency compared to the experimental results.

The application of the current inviscid BEM scheme to the prediction of the roll

response was not pursued further as viscous effects cannot be taken into account.
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Figure 5.13: Geometry and roll/heave decay configuration of a round-bilge hull-
section. B : beam of hull-section; T draft (=0.5B), Rb : bilge radius (=0.02B); yo

: initial heave displacement (=0.125 B); yb(t) : instantaneous heave displacement;
α(t) : instantaneous roll angle; O : origin of an inertial coordinate system; O′ :
origin of a body fixed coordinate system
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Figure 5.14: Sequential decay of the hull section in heave. Note that the dashed line
represents the equilibrium draft of the hull-section about which it oscillates freely
and eventually coming to a stop
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BEM

BEM,NS2D(VS),NS2D(IN)

Figure 5.15: (top) Heave decay-response of hull predicted by the BEM scheme along
with the experimental/numerical results presented in [Roddier 2000]; (bottom) Log-
arithmic heave-decay characteristics of the hull predicted by the BEM scheme along
with the experimental/numerical results presented in [Roddier 2000]. NS2D(VS) :
viscous version of the NS2D solver; NS2D(IN) : inviscid version of the NS2D solver
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5.3 Summary

One of the objectives of the development of a potential flow solver presented

in this chapter was the validation of the inviscid (IN) version of the NS2D solver.

This has been met by extending the current scheme to study the dynamics of two-

dimensional hull-sections (round-bilge) in both forced/prescribed and free-decay mo-

tions.

In the case of hull-sections subject to forced roll, the free-surface elevations pre-

dicted by the NS2D(IN) solver are found to be in good agreement with those from

the present method. In addition, the pressure and velocities predicted on the hull

surface are also in agreement.

It is known from experimental results that the effect of viscosity is not very

significant in the case of heave. This observation gives credence to the extension

of the present potential-flow method to study the free-decay of a hull-section in

heave. Here too, the results obtained from the two solvers are found to be in good

agreement. Moreover, no differences are observed in the viscous and inviscid free-

decay responses. This is in accord with the observation that the effects of viscosity

are negligible in the case of heave.

Most of the contents in this part of the thesis have been published in the papers

[Vinayan et al. 2005], [Kinnas et al. 2007] and [Vinayan and Kinnas 2007].
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Chapter 6

Ventilating Water-entry

The development of theoretical and numerical methods for the performance pre-

diction of surface-piercing propellers is inherently complicated due to the presence of

a free-surface. Some of the challenges involved are even more accentuated in the case

of a three-dimensional analysis. To simplify the problem to a certain extent, a two-

dimensional analysis is often used similar to a blade-element approach in air-screw

theory [Milne-Thomson 1973, Furuya 1985].

Yim [Yim 1969; 1971; 1974] pioneered the development of theoretical methods to

predict the performance characteristics of surface-piercing propellers by assuming a

two-dimensional flow field, which is obtained by unfolding the cylindrical surface con-

taining the blade element at a certain radius (see Figure 6.1). The two-dimensional

flow field, in essence, consists of a horizontal layer of water - thickness of which is

equivalent to the distance traveled by the leading edge of the blade element along

the helical line during one revolution. The blade element enters the layer at the

top and exits through the bottom part. This approach was applied by Yim [Yim

1969; 1971; 1974] to develop a linear theory for the entry-and-exit of a thin foil and

a base-vented symmetric wedge. Cox [1971] studied the linear water-entry problem

both theoretically and experimentally. Wang [Wang 1977; 1979] applied the same

approach as Yim to blade profiles with full ventilation and also extended the scheme

for an oblique entry-and-exit. Another notable work based on linear theory is that

of Terent’ev [1979].

Common to all the above theoretical methods is the linearization of the blade
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Figure 6.1: Marine propeller : concept of cylindrical surface, blade element and
helical line. Sketch based on figures in [Carlton 2007]

and ventilated cavity surfaces assuming that both are thin. [Yim 1969; 1971; 1974],

[Wang 1977; 1979] and [Terent’ev 1979] based their methods on an infinite Froude

number (no gravity) approximation for the free-surface assuming that the duration

of the entry-and-exit event is short and the velocity of entry is high. An exception

to this is the method of [Cox 1971] that considered an arbitrary entry speed and

included the effects of gravity.

Very few theoretical methods exist that take into account the full nonlinearity

of the ventilating problem. Two notable works include that of Chekin [1989] and

Faltinsen and Semenov [2008]. Both the methods solved the ventilating entry of a

semi-infinite flat plate within the precepts of self-similarity. The application of the

above linear and nonlinear theories is limited to simple geometries, and the effect of

gravity cannot be considered explicitly. These two shortcomings provide the moti-

vation for this work - The development of a numerical method with fully nonlinear

free-surface boundary conditions that considers the effects of gravity explicitly and
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that can be applied to the ventilating entry of arbitrarily shaped blade sections.

6.1 Physical Assumptions

The physical assumptions made in the modeling of the ventilating problem are

as follows:

(i) The flow is considered to be inviscid and irrotational. The speed of entry is

high enough to limit the effects of viscosity to a thin boundary layer along the

body.

(ii) The dynamics of the surrounding air is neglected except for maintaining the

ventilated cavity interface/free-surface at a constant pressure - in the case of

ventilation, the cavity is maintained at atmospheric pressure.

(iii) The fluid is incompressible assuming that the speed of entry is less than the

speed of sound. This assumption maybe violated locally at the instant of impact

of the leading edge with the water surface due to the large accelerations.

(iv) The effects of surface tension are ignored - it primarily affects spray formation

in the splash region.

(v) The propeller blade section is assumed to be rigid. This neglects any possible

interaction between the fluid and the blade section due to vibration (the pro-

peller blade vibrates as a consequence of the cyclic loading and unloading as it

enters and exits the water surface).

6.2 Unique aspects of the flow

Inception of ventilation : The inception of ventilation is too complicated a pro-

cess to be modeled accurately within the framework of potential theory. All
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of the linear and nonlinear theoretical models assume the foil to be ventilating

from the very beginning, with ventilation starting at the leading edge.

Detachment locations : The ventilated surface is nothing but a cavity that vents

into the atmosphere and is maintained at atmospheric pressure. An important

aspect of cavity flows is the problem of specifying the detachment location -

the point at which the cavity separates from the body surface [Birkhoff and

Zarantonello 1957, Gilbarg 1960]. Fixed detachment is appropriate for cases

where the point of detachment of the cavity is known a priori, for example,

bodies with sharp leading edges. For smooth foils, say with round leading

edges, the cavity detachment location is not known beforehand and has to be

determined as a part of the solution. Since typical surface-piercing propeller

sections have sharp leading edges, the ventilated cavity is assumed to start

right at the leading edge.

Brillouin-Villat Condition : The Brillouin-Villat (B-V) condition implies that

the curvature of a free streamline at detachment is either finite or equal to

that of the fixed boundary at the separation point. The B-V condition can be

better understood through the example of a supercavitating flat plate in an

unbounded flow domain (based on the cavity free-streamline theory of [Wu

1972]). The curvature of the cavity surface or the free-streamline is same as

that of the flat-plate near the leading edge, as seen in Figure 6.2.

6.3 Vertical Entry

6.3.1 Previous Work - SPPAN (Linear Model)

[Savineau and Kinnas 1995, Savineau 1996] solved the flow field around a fully

ventilated two-dimensional surface-piercing hydrofoil using a time-marching lower-

order boundary element method. The method solved for the shape of the ventilated
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Figure 6.2: Brillouin-Villat Condition : The curvature of the cavity surface near the
leading edge is finite. Based on the free-streamline theory of [Wu 1972]. α is the
angle of attack, U∞ is the free-stream velocity.

cavity and the pressure on the surface of the hydrofoil in the entry-phase. The

important characteristics of the method are as follows:

(i) The flow is solved with respect to a coordinate system that moves along with

the foil, as shown in Figure 6.3. In Figure 6.3, U∞ is the vertical velocity of

entry of the hydrofoil, u,v are the horizontal and vertical components of the

perturbation velocity, ~q is the total velocity with |~q| =
√

(U∞ + v)2 + u2, α is

the angle of attack, c is the chord length and yfs is the instantaneous location

of the free-surface at time t.

(ii) The vertical velocity of entry (U∞) is assumed to be sufficiently high for venti-

lation to start at the sharp leading edge of the foil and form a cavity along the

suction side.
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(iii) An infinite Froude number (Fn) is assumed with

Fn =
U∞√
gc

(6.1)

where g is the acceleration due to gravity. With this assumption, the free-

surface boundary conditions are linearized and the effects of gravity are ne-

glected.

(iv) The total potential, hence the velocity field, is decomposed into inflow and

perturbation components. A boundary-value problem is solved to obtain the

perturbation potential at each time-step of the time-marching scheme.

(v) The linearized free-surface boundary conditions are enforced using a “negative”

image method as shown in Figure 6.4.

(vi) The ventilated cavity shape is found iteratively by aligning the panels with the

flow and at convergence the cavity surface is tangent to the flow.

x

y

u

c

α

yfs = tU∞
~q(U∞ + v)

U∞

U∞

U∞

Figure 6.3: SPPAN : Surface piercing hydrofoil with coordinate system moving with
the foil
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Figure 6.4: SPPAN : Actual foil, cavity surface and corresponding images

6.3.2 Current work - Mathematical Formulation

Consider a rigid, 2-D hydrofoil entering an initially calm domain with a constant

velocity V(t) and an angle of attack α, as shown in Fig. 6.5. An ideal fluid is

considered and the flow is assumed to irrotational. A fixed (non-rotating) Cartesian

coordinate system is chosen to represent the flow with its origin at the undisturbed

water level. The flow is represented in terms of a harmonic function φ(x, t) commonly

referred to as the velocity potential. Also, the local fluid velocity is given as u =

∇φ = (φx, φy) = (u, v). Here, x = (x, y) represents the spatial location with respect

to the fixed coordinate system, with x being the horizontal measure and y the vertical

measure positive upward. The fluid domain and the corresponding boundary surfaces

are shown in Figure 6.5. SWB(t) represents the “wetted ” part of the hydrofoil surface,

SF(t) is the free-surface that also includes a part of the ventilated surface on the
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suction side of the hydrofoil and S∞ is the far-field boundary placed far enough to

minimize interference.

x

y

S∞

S∞

S∞

SF(t)

SF(t)

SF(t)

SWB(t)

α

V(t)

Ω(t)

Figure 6.5: Ventilating entry of a hydrofoil section : Fluid domain and corresponding
boundaries

• Boundary Condition on Hydrofoil SWB(t)

On the “wetted” part of the hydrofoil surface SWB(t),

∇φ · n = V(t) · n, x ∈ SWB(t) (6.2)

where V(t) is the prescribed velocity of the hydrofoil.

• Boundary Condition on Far Field Boundary S∞

The far-field boundary S∞ is assumed to be a no-flux surface with

∇φ · n = 0; x ∈ S∞ (6.3)

and special attention is paid to place the boundary far away from the body to avoid

reflection.
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• Initial Conditions

The initial conditions for this problem depend on the angle of attack α and the

existence of a ventilated cavity on the suction side of the hydrofoil. The treatment

of the fully ventilating case requires special attention. For a hydrofoil with a sharp

leading edge, ventilation is triggered right at the leading edge. However, during

the process of the development of the method it was found extremely difficult to

numerically trigger ventilation at the leading edge. According to [Wang 1977] the

flow field surrounding a ventilating foil is identical to that of supercavitating flat

plate (in an unbounded fluid domain) with zero cavitation number. This aspect of

the flow forms the basis for getting the initial conditions for the ventilating flow. The

proposed model consists of the following steps : (i) Assume an initial shape of the

ventilated cavity - the initial shape is derived from the analytical expressions for the

supercavity produced by a flat plate in an infinite flow domain. These expressions

are obtained from the free-streamline theory of [Wu 1955]. The initial cavity length

is assumed to be a fraction of the chord-length of the hydrofoil. (ii) Instead of being

treated as a free-surface, the initial shape of the ventilated cavity is assumed to

be rigid or wetted. With this assumption, the free-surface problem is solved as an

asymmetric water entry. (iii) After the hydrofoil has traveled a certain extent, a

part of the initial cavity assumed to be wetted is appended to the adjoining free-

surface. (iv) The actual solution of the ventilating problem starts from this point

onwards. The intersection of the initial ventilated cavity (modeled as wetted) and

the free-surface is treated as a fixed separation point. The solution is allowed to

progress with the free-surface on the suction side continuously detaching from the

intersection point. A graphical representation of the treatment at the leading edge

is shown in Figure 6.6.

• Treatment at a fixed separation point

At the fixed separation point, the normal velocity of the free-surface is assumed
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to be the same as that of the hydrofoil. This assumption assures continuity of slope

between the wetted body and the ventilated surface. This is consistent with the ana-

lytical solution for the local flow presented in [Faltinsen 2005] and [Zhao et al. 1996].

The potential is inherently continuous by virtue of the use of linear isoparametric

elements. The boundary integral equation is not solved at the separation point as

both the primary variable (φ) and the secondary variable (φn) are known.

STEP : 1

Foil, wetted part

Actual foil 

boundary

Initial shape taken to

be that of a supercavitating

hydrofoil at zero

cavitation number 

STEP : 2

       WETTED−ENTRY MODE

Problem solved as that of a sharp edged

body entering at an angle of attack.

(oblique entry)

Assumed initial shape

of ventilated surface.

Modeled as a rigid portion.

Foil, wetted part

V

V

STEP : 3

       START OF VENTILATION 

Initial shape

of ventilated surface.

Modeled as a rigid portion.

Foil, wetted part
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STEP : 4

       VENTILATING SOLUTION

Foil, wetted part

Continuity of Normal velocity 
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free−surface and the "rigid"

ventilated surface.

VV

δiv

Figure 6.6: Ventilating entry: Graphical representation of the treatment at the
leading edge
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6.3.3 Results

[Cox 1971] conducted a series of experiments with a symmetric wedge of dimen-

sions 0.5" (12.7 mm) by 6" (152.4 mm) with a chord length of 6". In the experiments,

the wedge was dropped from different heights (equivalent to changing the velocity of

entry Vw) and at different angles of attack, α. For each instance, the ventilated cav-

ity shape was photographed after the wedge had approximately traveled its length

through the water surface. These photographs provide an excellent source of valida-

tion for the BEM model. As a representative case, a velocity of entry of 2.45 m/s

(corresponding to a drop of 12") is chosen for validation. All the subsequent BEM

results correspond to this geometry and velocity.

Effect of initial condition

It was mentioned in the numerical formulation that an initial guess for the ven-

tilated cavity shape is obtained from the corresponding solution of a supercavitating

flat plate. The length of the initial guess is expressed as a percentage of the total

chord c of the hydrofoil and is represented by the parameter δiv. Figure 6.7 shows

the effect of the parameter δiv on the final ventilated cavity shape (the simulation

is stopped once the free-surface on the wetted side reaches the base of the wedge).

In terms of a chord length c = 152.4 mm, the minimum δiv of 2%c would be about

3mm, while the maximum would be about 7mm. On the whole, the parameter δiv

does not effect the final shape of the ventilated cavity and the free-surface elevation

on the wetted-side. Differences are observed in the region where the vertical part

of the ventilated cavity meets the horizontal free-surface. The similarity solution of

[Chekin 1989] and [Faltinsen and Semenov 2008] predict a cusp at the point where

the two convex free-surfaces meet. This aspect of the flow is not considered in the

numerical scheme and leads to the observed differences. Figure 6.8 shows the effect

of δiv on the wetted-side pressure and no discernible differences are observed. (All

the subsequent calculations are with δiv = 2%c.)
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The convergence characteristics of the ventilated cavity shape with respect to

a change in the number of panels on the cavity surface is shown in Figure 6.9,

where NF,s represents the number of panels on the entire free-surface, including the

ventilated cavity, on the suction side of the hydrofoil.

Effect of gravity

Figures 6.10 and 6.12 respectively show the ventilated cavity surfaces for different

levels of submergence, with (g 6= 0) and without (g = 0) the effects of gravity.

Defining a Froude number in terms of the chord length c as Fnc = Vw/
√
gc, g = 0

would correspond to Fnc = ∞ and g 6= 0 to Fnc=2. (Note that in the figures, only

the wetted boundary of the hydrofoil is shown. Although the thickness form is not

shown, the ventilated cavity does not intersect the suction side of the hydrofoil). The

effect of gravity becomes apparent when the free-surface elevations are expressed in

terms of the similarity variables as shown in Figures 6.14. In the absence of gravity

all the free-surface profiles, starting with the first instance when similarity is observed

to the end of the simulation, are seen to overlap. The scheme is able to preserve the

self-similarity of the flow. The lack of self-similarity, as expected, can be observed

in Figure 6.14 when the effect of gravity is included. Figure 6.11 and 6.13 show the

corresponding pressure distributions on the wetted part of the wedge.

Comparison with experiments

In Figure 6.15, a comparison between the predicted cavity surface and that

observed from the experiments of Cox [Cox 1971] is shown for an angle of attack

of 10◦. The free-surface elevation and the ventilated surface are compared for the

same level of submergence. There appears to be two lines representing the ventilated

cavity surface in the photograph. Cox [Cox 1971] attributes this to the presence of

glass walls that form the boundaries of the experimental tank set-up. The outline

farthest away from the wedge that is generally convex to the fluid is presumably the
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location of the boundary layer attachment on the glass. This layer is formed due to

the large retarding forces experienced by the fluid particles close to the glass surface.

Cox [Cox 1971] mentions that the inner line represents the actual cavity shape over

most of the chord. Based on these observations, it can be seen that the overall

agreement between the predicted and the experimental ventilated cavity surfaces is

good.

A similar comparison between the experimental and predicted results is shown

in Figure 6.16 for smaller angles of attack of 0◦, 2◦ and 4◦ respectively. In each of

these cases, the experimental photographs indicate that there is no ventilation on the

suction side of the wedge. In line with these observations the numerical predictions

are performed with both sides of the wedge wetted, i.e., the pressure and suction

sides of the wedge are assumed to be fully wetted (unlike the ventilating case where

the suction side is not wetted). The fully-wetted formulation presented along with

the validation studies is used here with the wedge entering the water surface at the

specified angle of attack. For all the three angles of attack considered here, the

comparison between the predicted and experimental results is satisfactory.

Comparison with multiphase model

The BEM model is based within a framework of potential flow, which neglects

the real fluid effects of viscosity and surface tension. A FLUENT based multiphase

model, the details of which are presented in Appendix D, is used to gauge the

deficiencies if any in neglecting these effects. Figure 6.17 shows a comparison of the

ventilated surface on the suction side along with the free-surface elevation on the

pressure side of the wedge predicted by the multiphase and BEM models. One of

the differences observed is the peeling away of the free-surface jet from the surface of

the wedge in the case of the multiphase model. During the initial stages of entry, the

BEM model predicts a region of negative pressure close to the intersection point of the

free-surface and the pressure side of the wedge. As the wedge penetrates further, this
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region of negative pressure tends to disappear. The occurrence of negative pressure is

due to the assumption in the BEM model that the fluid particles initially in contact

with wedge surface will always stay in contact as no gaps are allowed in the physical

domain. In the multiphase model, no such assumption is necessary. Once a region

of negative pressure is encountered, the fluid particles no longer stay in contact with

the wedge surface and behave approximately as free projectiles moving under the

influence of gravity [Greenhow 1987]. A comparison of the pressure distributions, as

seen in Figure 6.18, shows that the pressures predicted by the two methods are not

affected by this aspect.

The second difference is the occurrence of instabilities at the air-water interface in

the multiphase model. One possibility is that these are Rayleigh-Taylor instabilities

occurring as a result of the dynamic interaction between the air and water mediums.

The BEM model cannot predict these instabilities as it neglects viscosity and the

dynamic effects of the surrounding air. In spite of these differences, the overall

agreement between the BEM and multiphase models is satisfactory.

In terms of CPU time, the total simulation time upto the point of comparison

for the BEM scheme is about 1 hr, while for the FLUENT simulation is 50 hrs

(wall-time for a parallel run with 8 nodes. Single node - 1.6 GHz AMD Opteron

Dual-core processor with 4GB RAM). The above mentioned simulation times are for

∆t=1e-5 s with 500 panels in the BEM scheme and approximately 460000 cells in

the multiphase model. The BEM scheme has a definite advantage in predicting the

ventilated cavity shapes in terms of the CPU time.

Comparison with SPPAN (linear free-surface model)

A comparison of the pressure distribution along the wetted face, between SPPAN

(linear) and the current nonlinear method is shown in Figure 6.20. The linear method

is clearly deficient in terms of capturing the excess pressure due to the nonlinear free-

surface effects. The excess pressure corresponds to the region y > 0 where y = 0
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corresponds to the undisturbed free-surface level. This difference was shown to exist

even in the very early stages of entry in [Vinayan and Kinnas 2008]. Figures 6.19 and

6.20 highlight the shortcomings of the negative-image method and the importance

of including the nonlinear free-surface effects in the 3-D PROPCAV model.

Effect of Froude number and angle of attack

Olofsson [1996] mentions that in the fully ventilated regime, the effect of the

Froude number is negligible when Fn > 3. This is because the ventilated cavities

have asymptotically attained their final shapes and a subsequent increase in the

Froude number makes no difference. A similar observation can be made from the

2-D solutions as shown in Figure 6.21. The ventilated cavity shapes are seen to

converge rapidly towards the Fnc = ∞ (g = 0) shape.

Figure 6.22 shows the effect of the angle of attack on the ventilated cavity shapes

(g 6= 0 corresponds to Fnc = 2). The cavity volume is seen to increase with a

corresponding increase in the angle of attack. From the experimental results of [Cox

1971], no ventilation is seen for angles less than 6◦. For the smaller angles of attack,

the fully-wetted mode can be used instead to calculate the pressure on the wedge

(see Figure 6.16).
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Figure 6.7: Ventilating entry of a surface-piercing wedge : Effect of the parameter
δiv on the ventilated cavity shape. REGION C : Magnified view of the ventilated cavity
shape close to the leading edge of the hydrofoil.
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- ∆t=1e-4 s, NWB=100, NFs=300, NFp=125, N∞=40

127



0 0.05 0.1 0.15

0

0.2

0.4

0.6

0.8

1

1.2

C
p

s

t=0.014 s - 0.04s (step=0.002s)
t=0.0419 s

α0=10◦, g = 0

Figure 6.11: Ventilating entry of a surface-piercing wedge : Pressure along the wetted
part of the hydrofoil at different stages of entry in the absence of gravity g = 0.
Parameters of the simulation - ∆t=1e-4 s, NWB=100, NFs=300, NFp=125, N∞=40.
Cp is the pressure coefficient
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Figure 6.13: Ventilating entry of a surface-piercing wedge : Pressure along the wetted
part of the wedge at different stages of entry in the presence of gravity (g 6= 0).
Parameters of the simulation - ∆t=1e-4 s, NWB=100, NFs=300, NFp=125, N∞=40.
Cp is the pressure coefficient

130



­0.2 0 0.2 0.4

­1

­0.5

0

0.5

= 0.020000

= 0.025000

= 0.030000

= 0.035000

= 0.040000

= 0.043200

y
/
(V

w
t)

x/(Vwt)

s
s
s
s
s
s

t
t
t
t
t
t

g 6= 0

α0=10◦

­0.2 0 0.2 0.4

­1

­0.5

0

0.5

y
/
(V

w
t)

x/(Vwt)

g = 0

α0=10◦

t=0.028 - 0.0410 s

Figure 6.14: Ventilating entry of a surface-piercing wedge - Free-surface and ven-
tilated cavity shape, with (g 6=0) and without (g=0) the presence of gravity, at
different stages of entry expressed in terms of the similarity variables.

131



­0.1 ­0.05 0 0.05 0.1
­0.2

­0.15

­0.1

­0.05

0

0.05

INCH SCALE

WEDGE VENTILATED
SIDE OUTLINE

6’’=0.1524m

BEM SOLUTION

y

x

α0=10◦, g 6= 0
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Figure 6.18: Ventilating entry of a surface-piercing wedge : Comparison of pressure
along the wetted body surface between FLUENT Multiphase (VOF with SST k−ω
turbulence model) and BEM results. Vw=2.45 m/s corresponding to a 12′′ fall. Angle
of attack, α0=10◦.
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Figure 6.19: Ventilating entry of a surface-piercing wedge : Comparison of ventilated
cavity shapes between (a) SPPAN-linear and (b) BEM-nonlinear methods. Vw=2.45
m/s corresponding to a 12′′ fall. Angle of attack, α0=10◦.
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Figure 6.20: Ventilating entry of a surface-piercing wedge : Comparison of pressure
along the wetted part of the hydrofoil SPPAN-linear and BEM-nonlinear methods.
(a) BEM-Nonlinear (g=0), (b) SPPAN-linear (g=0), (c) BEM-Nonlinear (g 6=0);
Vw=2.45 m/s corresponding to a 12′′ fall. Angle of attack, α0=10◦.
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number on the ventilated cavity shapes. Fnc=∞ corresponds to g=0. Vw=2.45 m/s
for Fnc=2.0 and Vw=3.67 m/s for Fnc=3.0

138



­0.02 0 0.02

­0.1

­0.05

0

0.05

x

y

g 6=0
g=0

α0=6◦

­0.02 0 0.02

­0.1

­0.05

0

0.05

x

y

g 6=0
g=0

α0=8◦
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6.4 Rotating Entry

The two-dimensional approach of Yim [Yim 1969; 1971; 1974] is based on the

concept of having the blade element pass through a horizontal layer of water sand-

wiched between semi-infinite expanses of air. This makes the problem of ventilating

entry more amenable to mathematical modeling but difficult to realize in a numerical

setting. As shown in Figure 6.1, the blade element of a marine propeller follows a

helical path on a cylindrical surface and the two-dimensional approach was based

on expanding this surface into a horizontal layer of water. An alternative approach

that closely mimics the actual setting is to model the flow as seen in the plane of

the propeller (the ys − zs plane or as seen in the ship-fixed coordinate system).

The concept can be better understood from the two-dimensional sections of the

ventilated cavity surface predicted on the propeller blade sections, as shown in Figure

6.23. The top part of Figure 6.23 shows the ventilated cavity surface in the x-z

plane, along with the propeller section at mid-radius, at different angular positions.

The actual rotational path of the propeller section, along with the ventilated cavity

surface, is shown in the bottom part of Figure 6.23.

6.4.1 Initial Boundary Value Problem

The equivalent two-dimensional problem is that of a blade-section rotating with

the propeller rotational speed ω at a radius r (the radius at which the propeller

section is located) as shown in Figure 6.24. The fluid domain and its corresponding

boundaries are as shown in Figure 6.24.

• Boundary Condition on Hydrofoil SWB(t)

On the “wetted” part of the hydrofoil surface SWB(t),

∇φ · n = V(t) · n, x ∈ SWB(t) (6.4)

where V(t) is the prescribed velocity of the hydrofoil.
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Figure 6.23: Rotating entry of a blade section : two-dimensional sections of the
ventilated cavity surfaces predicted by PROPCAV. Taken from [Young 2002]

• Boundary Condition on Far Field Boundary S∞

The far-field boundary S∞ is assumed to be a no-flux surface with

∇φ · n = 0; x ∈ S∞ (6.5)

and special attention is paid to place the boundary far away from the body to avoid

reflection of the free-surface disturbance generated by its motion.

The solution of the problem is similar to the vertical entry case upto the point the

hydrofoil/blade-section is fully immersed. Once the hydrofoil is immersed completely,

the flow is assumed to leave tangentially from the trailing edge with it being treated

as a fixed separation point.
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Figure 6.24: Rotating entry of a blade section : Fluid domain and corresponding
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6.4.2 Results

Figures 6.26 through 6.29 show the preliminary results obtained using the rotat-

ing approach instead of the conventional vertical entry. The blade-element (wedge-

shaped) has a chord of 0.04 m and rotates at a radius of r=0.1 m. These dimensions

approximately correspond to a section of the 841B propeller [Olofsson 1996] at a

radius of r/R=0.7. The angular velocity, ω is taken to be 100 rad/s. The simulation

is started with a part of the wedge initially immersed, as shown in Figure 6.23. The

initially immersed chord length of the blade-section is denoted as δi, which corre-

sponds to an initial angular position of θi. α is the angle of attack measured with

respect to the tangent along the circular path of the blade-section.

At a blade angle of 90◦ (see Figure 6.26), the pressure side of the hydrofoil is

completely immersed. This marks the beginning of the fully submerged phase of the
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hydrofoil. The free-surface is assumed to leave tangentially from the trailing edge

with it being treated as a fixed separation point. Figures 6.27 and 6.29 show the

position of the hydrofoil and the ventilated cavity at blade angles of 180◦ and 240◦

respectively.

The wedge has reached the exit phase at a blade angle of approximately 260◦ as

shown in Figure 6.29. At present the simulation is stopped just before the leading

edge ventilated cavity intersects the free-surface on the other side.

For the previous case, the angle of attack was such that the ventilated cavity

remains open during the entire course of rotation. This is an ideal case scenario for

a surface-piercing propeller. A collapsed cavity, however, is not ideal as it results

in a high-drag mixture flow. Such a case is shown in Figure 6.30, which shows the

ventilated cavity for an angle of attack α=-10◦. The cavity is seen to collapse and

hit the solid part of the suction side.

6.5 Summary

A two-dimensional BEM method has been developed to model the ventilating

entry of a wedge-shaped hydrofoil or equivalently a blade-section of a surface-piercing

propeller, in both vertical and rotational motion. The current scheme includes

fully nonlinear free-surface boundary conditions, which is an advantage over existing

methods with a negative image or a self similar flow assumption.

The vertical-entry of the wedge is modeled along the lines of the two-dimensional

approach introduced by [Yim 1971] and later extended by [Wang 1977]. A systematic

study of the effect of the number of panels, time-step and other numerical parameters

was conducted to ascertain the accuracy of the predicted ventilated cavities. The

ventilated cavity shapes for an angle of attack of 10◦ compared well with experimental

results of [Cox 1971]. The results from the present method also compared well with

a FLUENT based VOF model.
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The results from the present fully nonlinear scheme were compared with SPPAN

[Savineau 1996], which is based on the negative image method. The comparison

between the two methods clearly indicates the shortcomings of the negative image

method and gives credence to the claim that fully nonlinear free-surface boundary

conditions are required in PROPCAV to improve its correlation with experiments.

The numerical scheme has also been extended to model the rotating entry of a

hydrofoil. This is a novel approach in understanding the actual ventilation char-

acteristics of a surface-piercing propeller. The scheme predicts cavity shapes that

are reasonable but further studies are needed to refine the method (oscillations are

seen at the opening of the ventilated cavity). Furthermore, the method needs to be

extended to analyze the final exit-phase of the rotational motion.
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Figure 6.26: Surface-piercing propeller section in rotation : blade angle = 90◦. Angle
of attack α=0◦ (angle of attack defined in Figure 6.25)
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Figure 6.27: Surface-piercing propeller section in rotation : blade angle = 180◦.
Angle of attack α=0◦ (angle of attack defined in Figure 6.25)
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Figure 6.28: Surface-piercing propeller section in rotation : blade angle = 240◦.
Angle of attack α=0◦ (angle of attack defined in Figure 6.25)
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Figure 6.29: Surface-piercing propeller section in rotation : blade angle ≈ 260◦.
Angle of attack α=0◦ (angle of attack defined in Figure 6.25)
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Figure 6.30: Surface-piercing propeller section in rotation, collapse of ventilated
cavity. Angle of attack α=-10◦ (angle of attack defined in Figure 6.25)
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Chapter 7

Conclusions

A two-dimensional boundary element method has been developed to model the

strongly nonlinear interaction between a surface-piercing body and the free-surface.

The method was applied to a class of free-surface problems with and without the

presence of ventilation. The major contributions of this work include:

1. Development of a fast and reliable algorithm to predict the ventilated cavities

formed as a result of the vertical entry of a surface-piercing hydrofoil or blade

element of a surface-piercing propeller. The salient features of the current

algorithm are the following :

• All the nonlinearities of the free-surface body interaction are retained.

Hence, the algorithm can be applied to foils operating at arbitrary Froude

numbers.

• Linearizations based on the geometry of the foil or the angle of attack

at which it enters the water surface are absent. The scheme can thus be

applied to foils or blade-sections of finite dimensions and arbitrary shape

entering the water surface obliquely. This is an advantage over nonlinear

analytical models that are applied to flat plates of semi-infinite extent

under the assumptions of self-similarity (neglects the effects of gravity).

Both these features combined make the current algorithm a unique addition to

the field of performance prediction of surface-piercing propellers. The nonlinear
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approach also helps assess the errors made in the 3D hydrodynamic model in

PROPCAV as a result of the negative-image model for the free-surface.

The vertical-entry algorithm was developed along the lines of the two-dimensional

approach of [Yim 1969; 1971; 1974] and [Wang 1977; 1979]. This approach ap-

proximates the flow-field as a horizontal layer of water sandwiched between

layers of air of infinite extent. It is a clever mathematical construct but diffi-

cult to implement numerically. In this work a novel approach is proposed that

looks at the entry-and-exit problem in a rotational mode instead of the tra-

ditional vertical or oblique manner. This is the first method that can predict

the ventilated cavity shapes formed as a result of the rotational motion of a

blade section. Once the scheme has been validated with experiments or other

numerical methods, it can be used to design blade sections that ventilate over

the entire submerged phase. This is as an essential requirement for maintain-

ing the efficiency of SP propellers, as the premature collapse of the ventilated

cavities on the blade can result in reduced performance.

2. Development of a potential flow solver to predict the dynamics of two-dimensional

hull sections. The scheme provides a framework for validating the nonlinear

free-surface dynamics relating to the large roll motion of hull-sections in a fully

viscous approach.

Apart from the above mentioned applications, the algorithm developed here can

be used for a whole range of problems in marine hydrodynamics :

• Asymmetric and symmetric water-entry of two-dimensional hull-sections : this

has application in the field of slamming of hull sections.

• Water-entry of arbitrary cylindrical sections.
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• Modeling of the wave-body interaction of marine structures. The method can

also be used to simulate three-dimensional problems in an axisymmetric man-

ner based on the formulation presented in Appendix E.

7.1 Discussions and Recommendations

The results presented in [Young 2002] show that PROPCAV predicts the mean

forces with reasonable accuracy in comparison with experimental results. Based

on the current work, it has been shown that the negative image method is clearly

deficient in capturing the full nonlinearities of the entry phase.

PROPCAV is based on a lower-order BEM or constant-strength panel method.

Extending the two-dimensional linear isoparametric scheme developed here would

require at least a bi-linear distribution in the 3D model. As a first step towards

improving the 3D model, a two-dimensional scheme is developed to model the non-

ventilating entry of a surface-piercing hydrofoil based on a constant-strength panel

method (CPM) along with fully nonlinear free-surface boundary conditions. The

scheme can be considered as the 2D equivalent of a fully nonlinear 3D model in

PROPCAV.

The basic difference between the linear isoparametric and constant-strength

methods is the location where the variables are collocated. In the linear isopara-

metric scheme, the variables are calculated at the end-points of the panel while in

the constant-strength scheme it is at the mid-point of the panel (see Figure 7.1).

The steps in the constant-strength scheme are the following

• Solve the boundary value problem to obtain the variables (normal velocity

on the Dirichlet boundary or the free-surface and velocity potential on the

Neumann boundary) at the mid-points of the panels.

• On the free-surface, the velocity potential is interpolated from the mid-points

150



                                       MID−POINT

(COLLOCATION POINT IN CONSTANT−STRENGTH BEM)

                                  NODE POINTS

(COLLOCATION POINT IN LINEAR ISOPARAMETRIC BEM)

   

Figure 7.1: Constant-strength panel method, location of panel end-points and control
points

to the end-points of the element. This interpolation is based on cubic-splines

with arc-length as a parameter.

• Once the velocity potential is obtained at the end-points, further steps are

similar to the ones used in the linear isoparametric scheme.

A comparison of the free-surfaces obtained from the constant and linear strength

BEM schemes is shown in Figure 7.2 for a wedge with included angle αw=18◦. The

overall comparison between the predicted free-surface elevations is good except for

minor differences in the region of the jet (as shown in the close-up of the jet region

in Figure 7.2). This difference, however, should not affect the pressure distribution

as it falls within the region where the gage pressure is zero.

An important difference between the two schemes is the ratio of the sizes of ad-

jacent panels at the free-surface body intersection. In the constant-strength method,

it was found necessary to keep this ratio above four to obtain a stable free-surface.

However, in the linear scheme, a much smaller ratio of one was used.
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Figure 7.2: Water-entry of a wedge with an included angle, αw=18◦. Comparison
of free-surface elevations predicted by the constant-strength panel and the linear-
strength BEM schemes.

Computational efficiency

The computational resources required for a three-dimensional analysis of surface-

piercing propellers with fully nonlinear free-surface boundary conditions are enor-

mous. A major part of the computational time is spent on inverting a rather large

dense matrix as a part of the solution of boundary value problem.

A way of increasing the efficiency is through the use of optimized or tuned BLAS

and LAPACK [Anderson et al. 1999] routines provided in the ATLAS (Automati-
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cally tuned linear algebra software, [Whaley and Dongarra 1997]) library. The per-

formance of these libraries was tested in the case of the two-dimensional algorithm

for the constant-strength scheme. For a comparable problem size, defined by the

total number of elements or panels on the domain boundaries, the tuned routines

out-performed the conventional routines by a factor of four. This can significantly

improve the computational efficiency of the three-dimensional scheme.

In the context of the extension into three-dimensions, a review of the multipole

expansions for the source and dipole influence coefficients for a quadrilateral panel

is presented in Appendix F.
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Appendix A

2D Influence Coefficients

Details of the derivation of analytical (closed-form) expressions for the two-

dimensional source and dipole influence coefficients are presented here. These in-

fluence coefficients are based on linear isoparametric panels. Consider a generic

linear isoparametric panel as shown in Figure A.1. The panel is represented in a

local coordinate system O −XY , with h being the panel length.

O

X

X

h

Y

P(Xo, Yo)

Q(X, 0)

(1)

(2)

Figure A.1: Linear isoparametric element

For a collocation point P (Xo, Yo), the two-dimensional Green’s function [Kellogg

1954] is given as

G(P,Q) =
1

2π
ln

1

|P − Q| (A.1)

where Q = (X, 0) is the integration point with 0 ≤ X ≤ h and |P − Q| is the
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Euclidean distance between P and Q given as

|P − Q| =
√

(X −Xo)2 + Y 2
o (A.2)

Hence, the source influence function can be represented as

G(X) ≡ G(P,Q) = − 1

4π
ln
[

(X −Xo)
2 + Y 2

o

]

(A.3)

For the normal dipole, we have

Gn(X) ≡ Gn(P,Q) = ∇G(P,Q) · ~n = − 1

2π

Yo

(X −Xo)2 + Y 2
o

(A.4)

where ~n is the normal vector on the panel. In summary, we have

Source Function : G(X) = − 1

4π
ln
[

(X −Xo)
2 + Y 2

o

]

(A.5)

Dipole Function : Gn(X) = − 1

2π

Yo

(X −Xo)2 + Y 2
o

(A.6)

To derive the influence coefficients for a linear isoparametric panel, assume a

source/dipole strength distribution of the form

f(X) = f1

(

1 − X

h

)

+ f2

X

h
(A.7)

where f1 and f2 represent values of the function at the end-points of the panel, as

shown in Figure A.2. Based on (A.3) and (A.7), we can write the source influence

function as

Is =

h
∫

0

f(X)G(X)dX =
f1

h
[(h−Xo)Isc − Isl] +

f2

h
[XoIsc + Isl]

= f1Is,1 + f2Is,2

(A.8)

where,

Isc =

h
∫

0

G(X)dX

Isl =

h
∫

0

(X −Xo)G(X)dX



































Is,1 =
1

h
[(h−Xo)Isc − Isl]

Is,2 =
1

h
[XoIsc + Isl]

(A.9)
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Similarly, the dipole influence function can be written as

Id =

h
∫

0

f(X)G(X)dX =
f1

h
[(h−Xo)Idc − Idl] +

f2

h
[XoIdc + Idl]

= f1Id,1 + f2Id,2

(A.10)

where,

Idc =

h
∫

0

Gn(X)dX

Idl =

h
∫

0

(X −Xo)Gn(X)dX



































Id,1 =
1

h
[(h−Xo)Idc − Idl]

Id,2 =
1

h
[XoIdc + Idl]

(A.11)

After simplification, the final expressions for the individual components of the

source and dipole influence functions are as follows

Isc =
1

4π
[(Xo − h) lnA−Xo lnB + 2h+ 2YoW ]

Isl =
1

8π
[B(lnB − 1) −A(lnA− 1)]

Idc =
W

2π

Idl =
Yo

4π
[lnB − lnA]

(A.12)

where,
A = (Xo − h)2 + Y 2

o

B = X2
o + Y 2

o

W = arctan
Yo

Xo

− arctan
Yo

Xo − h

(A.13)

Some useful integrals and relations used in the derivation [Gradshteyn and Ryzhik

2007]:
∫

ln(x2 + a2)dx = x ln(x2 + a2) − 2x+ 2a arctan
x

a
∫

x ln(x2 + a2)dx =
1

2
[(x2 + a2) ln(x2 + a2) − x2]

(A.14)
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∫

(x2 + a2)−1dx =
1

a
arctan

x

a

∫

x(x2 + a2)−1dx =
1

2
ln(x2 + a2)

arctanx+ arctanx−1 = +
π

2
[x > 0]

arctanx+ arctanx−1 = −π
2
[x < 0]

(A.15)

O

X

X

h

Y

P(Xo, Yo)

Q(X, 0)

(1)

(2)

f

f(X)

f1

f2

Figure A.2: Linear strength distribution

Two special cases that need to be considered separately are when the collocation

point P coincides with end-points, (1) or (2), of the panel. These cases represent

the self-influence part of the source and dipole influence functions.

Case 1 : P coincides with end-point (1). In this case Xo = 0,Yo = 0,A = h2

and B = 0.

Isc =
1

4π
2h(1 − lnh)

Isl = − 1

4π

h2

2
(2 lnh− 1)











Idc = 0

Idl = 0
(A.16)
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Case 2 : P coincides with end-point (2). In this case Xo = h,Yo = 0,A = 0 and

B = h2.

Isc =
1

4π
2h(1 − lnh)

Isl =
1

4π

h2

2
(2 lnh− 1)











Idc = 0

Idl = 0
(A.17)

The above expressions for the source and dipole influence coefficients are pre-

sented in terms of the local coordinate system. Since the geometry of the panels

are defined in the global coordinate system , a transformation has to be made from

the global o− xy to local O −XY coordinate system. Figure A.3 shows the global

representation of the generic panel shown in Figure A.1 and it is labeled as the jth

panel in the global numbering scheme.

O

X

Y

P(xi, yi)

o x

y

α

Ej

E(j+1)

jth panel

Figure A.3: Local and global systems

For the panel, Ej(xj, yj) and Ej+1(xj+1, yj+1) are the end points, P(xi, yi) is the

collocation point. Based on the geometry of the panel, the transformation from the
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global to local coordinate system is given by

α = arctan
yj+1 − yj

xj+1 − xj

(A.18)

Xo = (xi − xj) cosα+ (yi − yj) sinα (A.19)

Yo = (xi − xj) sinα− (yi − yj) cosα (A.20)

h =
√

(xj+1 − xj)2 + (yj+1 − yj)2 (A.21)

160



Appendix B

Free-surface remeshing

Let the free-surface consist of a set of Lagrangian markers represented as Pk =

(xk, yk), k = 1, 2, · · · , N (N is the total number of particles on the free-surface).

One of the commonly used parameters is the chord-length or the Euclidean distance

between two consecutive particles [Rogers and Adams 1990, Ueberhuber 1997]. From

Figure B.1, the chord length between points Pk and Pk+1 can be written as

τk+1 − τk = |Pk+1 − Pk|

=

√

[

(xk+1 − xk)2 + (yk+1 − yk)2
] (B.1)

Based on the parameter τk, the equation for a single parametric cubic spline

segment is given by

P(τ) =

4
∑

i=1

Biτ
i−1, τk ≤ τ ≤ τk+1 (B.2)

The above notation is based on that used in [Rogers and Adams 1990]. In Equation

B.2, τk and τk+1 are the parameter values at the beginning and end of the segment.

P(τ) =
(

x(τ), y(τ)
)

is the position vector of any point on the cubic spline segment.

The constant coefficients Bi are obtained by fitting a cubic-spline through the set of

Lagrangian points. The Cartesian coordinates, each have a similar formulation as

Equation B.2, can be written as

x(τ) =
4
∑

i=1

Bixτ
i−1, τk ≤ τ ≤ τk+1

y(τ) =
4
∑

i=1

Biyτ
i−1, τk ≤ τ ≤ τk+1

(B.3)
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An issue with the chord-length based parametrization is that it is not very accu-

rate in regions of high curvature. Remeshing based on chord-length as a parameter

can lead to the loss of resolution in regions of high curvature. A better choice for

the parametric representation is the arc-length of the cubic spline segment, given by

the expression

sk+1 − sk =

τk+1
∫

τk

√

(x′)2 + (y′)2dτ (B.4)

where sk and sk+1 represent the arc-lengths corresponding to points Pk and Pk+1.

The arc-lengths are measured from the start of the free-surface with s1 = 0 corre-

sponding to the point P1. The derivatives x′(τ) and y′(τ) can be found by differen-

tiating Equation B.2 and B.3. Note that (′) denotes differentiation with respect to

the parameter τ . We have

P′(τ) =

4
∑

i=1

Bi(i− 1)τ i−2

x′(τ) =
4
∑

i=1

Bix(i− 1)τ i−2

= B2x + 2B3xτ + 3B4xτ
2

y′(τ) =

4
∑

i=1

Biy(i− 1)τ i−2

= B2y + 2B3yτ + 3B4yτ
2


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τk ≤ τ ≤ τk+1 (B.5)

With the coefficients Bi known, the integral in Equation B.4 can be evaluated nu-

merically to calculate the arc-length of the segment. All subsequent representations

of the free-surface are based on the arc-length as a parameter.

The aim of the remeshing scheme is to transfer data from an old set of free-

surface markers to a new set as accurately as possible. This is done based on the
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a

b

Pk−1

Pk−1

Pk

Pk

Pk+1

Pk+1

|Pk
−Pk−

1
|

|P
k+1 −P

k |

τ = τk−1

τ = τk+1

sk
− s

k−
1

sk+1 − sk

s = sk−1

s = sk+1

Lagrangian marker

Free-surface

Figure B.1: Parametric representation of free-surface, a : chord-length as parame-

ter, b : arc-length as parameter

following steps:

(i) Given a set of free-surface points represented parametrically as (sk,x
(o)
k ) and

(sk,y
(o)
k ). Similarly, since the free-surface is a Dirichlet boundary, the ve-

locity potential at these points can be represented as (sk,φ
(o)
k ). Here sk is

the arc-length corresponding to the free-surface point Pk(x
(o)
k , y

(o)
k ) with k =

1, 2, · · · , N . N is the total number of points on the free-surface. Note that the

superscript (o) indicates a value belonging to the old set of parameters.

(ii) Obtain a cubic-spline fit for each set of data for the old free-surface. An indi-

163



vidual cubic-spline segment can be represented as

x(o)(s) =

4
∑

i=1

Cix,k s
i−1

y(o)(s) =

4
∑

i=1

Ciy ,k s
i−1

φ(o)(s) =

4
∑

i=1

Ciφ,k s
i−1


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
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
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
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





sk ≤ s ≤ sk+1 (B.6)

where Cix,k, Ciy ,k and Ciφ,k are the coefficients obtained from the cubic-spline

fit.

(iii) Calculate the new set of parameters represented as (r1, r2, · · · , rm, · · · , rM) with

r1 = s1 and rM = sN . Note that the new set consists of strictly increasing pa-

rameters. The new set of parameters can be obtained based on an equal/graded

arc-length or adpative curvature based criteria.

(iv) Evaluate the new set of free-surface points (rm,y(n)
k ) and (rm,y(m)

n ) with velocity

potential (rm,φ(n)
m ) based on the cubic spline representation, Equation B.6.

Note that the superscript (n) indicates a value belonging to the new set of

parameters.

Even though the above procedure is presented here with respect to the remesh-

ing of the free-surface, it can be easily adapted to interpolate information on any

boundary surface of the fluid domain.
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Appendix C

Fifth-order Gravity Waves

Analytical forms of two alternate solutions for steady nonlinear waves based on

the fifth-order Stokes theory of [Skjelbreia and Hendrickson 1961] and [Fenton 1985]

are presented. The intent of the chapter is to provide a brief outline of the wave

characteristics without presenting the underlying theory.

C.1 Nomenclature

L

H

dz

x

c

η

v

u

M.W.L

Figure C.1: Important characteristics of a nonlinear wave

H : wave height
L : wave length
T : wave period
c : wave speed
d : mean depth of water

(distance from bottom surface to mean water line, M.W.L)
g : gravitational acceleration
k : wavenumber = 2π/L
(x, z) : Cartesian coordinates fixed to bottom surface through which

waves move at speed c
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η ≡ η(x, t) : wave elevation, elevation of free-surface above M.W.L
ϕ ≡ ϕ(x, z, t) : velociy potential with respect to (x, z) coordinate system
u ≡ u(x, z, t) : horizontal component of velocity with respect to (x, z) coordinate system
v ≡ v(x, z, t) : vertical component of velocity with respect to (x, z) coordinate system

C.2 Solution I

The analytical form of nonlinear waves based on the theory of [Skjelbreia and

Hendrickson 1961].

C.2.1 Wave Elevation

The wave elevation η is expressed as a Fourier series

kη = λ cos(θ) + (λ2B22 + λ4B24) cos(2θ)

+ (λ3B33 + λ5B35) cos(3θ) + λ4B44 cos(4θ)

+ λ5B55 cos(5θ)

(C.1)

where θ = k(x− ct). Equation (C.1) can be written in a more simplified form as

kη =

5
∑

n=1

λnbn cos(nθ) (C.2)

where,

b1 = 1

∣

∣

∣

∣

∣

b2 = B22 + λ2B24

b3 = B33 + λ2B35

∣

∣

∣

∣

∣

b4 = B44

b5 = B55

∣

∣

∣

∣

∣

(C.3)

In the above expansion, the quantity λ has no physical significance and may be

interpreted as a length scale equal to the amplitude of the wave at lowest order

[Fenton 1985]. The coefficients Bij are dimensionless functions of d and L (given in

Table C.1).
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C.2.2 Wave Potential

The velocity potential can be written as

k

c
ϕ = (λA11 + λ3A13 + λ5A15) cosh(kz) sin(θ)

+ (λ2A22 + λ4A24) cosh(2kz) sin(2θ)

+ (λ3A33 + λ5A35) cosh(3kz) sin(3θ)

+ (λ4A44) cosh(4kz) sin(4θ)

+ (λ5A55) cosh(5kz) sin(5θ)

(C.4)

Equation (C.4) can be written in a simplified form as follows

k

c
ϕ =

5
∑

n=1

λnan cosh(nkz) sin(nθ) (C.5)

where,

a1 = A11 + λ2A13 + λ4A15

∣

∣

∣

∣

∣

a2 = A22 + λ2A24

a3 = A33 + λ2A35

∣

∣

∣

∣

∣

a4 = A44

a5 = A55

∣

∣

∣

∣

∣

(C.6)

The coefficients Aij are dimensionless functions of d and L (given in Table C.1).

C.2.3 Velocity Components

The horizontal and vertical velocity components are derived from the expression

for the velocity potential, as given in Equation (C.5).

k

c
u =

k

c

∂ϕ

∂x
=

5
∑

n=1

λnan cosh (nkz) cos (nθ)n
∂θ

∂x
(C.7)

∵ θ = k(x− ct),
∂θ

∂x
= k. Thus

u

c
=

5
∑

n=1

λn nan cosh (nkz) cos (nθ) (C.8)

Similarly,
k

c
v =

k

c

∂ϕ

∂z
=

5
∑

n=1

λnan sinh (nkz) sin (nθ)nk (C.9)
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or,
v

c
=

5
∑

n=1

λn nan sinh (nkz) sin (nθ) (C.10)

C.2.4 Application

For a given H, d and T , the wave length L and the parameter λ are obtained by

solving a set of nonlinear equations of the form

πH

d
=

L

d
[λ+ λ3B33 + λ5(B35 +B55)]

d

L0

=
d

L
tanh(kd) (1 + λ2C1 + λ4C2)

(C.11)

where C1 and C2 are coefficients that are functions of d and L (given in Table C.1)

and

L0 =
gT 2

2π
(C.12)

C.3 Solution II

The analytical form of nonlinear waves based on the theory of [Fenton 1985].

C.3.1 Wave Elevation

The wave elevation η is expressed as a Fourier series

kη =
[

ǫ+ ǫ3B31 − ǫ5(B53 +B55)
]

cos(θ)

+ (ǫ2B22 + ǫ4B42) cos(2θ)

+ (−ǫ3B31 + λ5B53) cos(3θ)

+ ǫ4B44 cos(4θ)

+ ǫ5B55 cos(5θ)

(C.13)

where θ = k(x− ct). Equation (C.13) can be written in a more simplified form as

kη =
5
∑

n=1

ǫnbn cos(nθ) (C.14)
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where,

b1 = 1 + ǫ2B31 − ǫ4(B53 +B55)

∣

∣

∣

∣

∣

b2 = B22 + ǫ2B42

b3 = −B31 + ǫ2B53

∣

∣

∣

∣

∣

b4 = B44

b5 = B55

∣

∣

∣

∣

∣

(C.15)

In the above expansion, the quantity ǫ = kH/2 represents the dimensionless wave

height. The coefficients Bij are dimensionless functions of d and L (given in Table

C.2).

C.3.2 Wave Potential

The velocity potential can be written as

1

C0

√

k3

g
ϕ = (ǫA11 + ǫ3A31 + ǫ5A51) cosh(kz) sin(θ)

+ (ǫ2A22 + ǫ4A42) cosh(2kz) sin(2θ)

+ (ǫ3A33 + ǫ5A53) cosh(3kz) sin(3θ)

+ (ǫ4A44) cosh(4kz) sin(4θ)

+ (ǫ5A55) cosh(5kz) sin(5θ)

(C.16)

Equation (C.16) can be written in a simplified form as follows

1

C0

√

k3

g
ϕ =

5
∑

n=1

ǫnan cosh(nkz) sin(nθ) (C.17)

where,

a1 = A11 + ǫ2A31 + ǫ4A51

∣

∣

∣

∣

∣

a2 = A22 + ǫ2A42

a3 = A33 + ǫ2A53

∣

∣

∣

∣

∣

a4 = A44

a5 = A55

∣

∣

∣

∣

∣

(C.18)

The coefficients C0 and Aij are dimensionless functions of d and L (given in Table

C.2).

C.3.3 Velocity Components

The horizontal and vertical velocity components are derived from the expression

for the velocity potential, as given in Equation (C.17).
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1

C0

√

k3

g
u =

1

C0

√

k3

g

∂ϕ

∂x
=

5
∑

n=1

ǫnan cosh (nkz) cos (nθ)n
∂θ

∂x
(C.19)

∵ θ = k(x− ct),
∂θ

∂x
= k. Thus

1

C0

√

k

g
u =

5
∑

n=1

ǫn nan cosh (nkz) cos (nθ) (C.20)

Similarly,

1

C0

√

k3

g
v =

1

C0

√

k3

g

∂ϕ

∂z
=

5
∑

n=1

ǫnan sinh (nkz) sin (nθ)nk (C.21)

or,

1

C0

√

k

g
v =

5
∑

n=1

ǫn nan sinh (nkz) sin (nθ) (C.22)

C.3.4 Application

For a given H, d and T , the wave length L can be obtained by solving the

dispersion relation

C0 + ǫ2C2 + ǫ4C4 =
2π

T
√
gk

(C.23)

where C0, C2 and C4 are dimensionless functions of d and L (given in Table C.2).
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S = sinh(kd)

C = cosh(kd)

A11 = 1/S

A13 = −C2(5C2 + 1)/(8S5)

A15 = −(1184C10 − 1440C8 − 1992C6 + 2641C4 − 249C2 + 18)/(1536S11)

A22 = 3/(8S4)

A24 = (192C8 − 424C6 − 312C4 + 480C2 − 17)/(768S10)

A33 = (13 − 4C2)/(64S7)

A35 = (512C12 + 4224C10 − 6800C8 − 12808C6 + 16704C4 − 3154C2 + 107)
/[4096S13(6C2 − 1)]

A44 = (80C6 − 816C4 + 1338C2 − 197)/[1536S10(6C2 − 1)]

A55 = −(2880C10 − 72480C8 + 324000C6 − 432000C4 + 163470C2 − 16245)
/[61440S11(6C2 − 1)(8C4 − 11C2 + 3)]

B22 = C(2C2 + 1)/(4S3)

B24 = C(272C8 − 504C6 − 192C4 + 322C2 + 21)/(384S9)

B33 = 3(8C6 + 1)/(64S6)

B35 = (88128C14 − 208224C12 + 70848C10 + 54000C8 − 21816C6 + 6264C4 − 54C2 − 81)
/[12288S12(6C2 − 1)]

B44 = C(768C10 − 448C8 − 48C6 + 48C4 + 106C2 − 21)/[384S9(6C2 − 1)]

B55 = (192000C16 − 262720C14 + 83680C12 + 20160C10 − 7280C8 + 7160C6

−1800C4 − 1050C2 + 225)
/[12288S10(6C2 − 1)(8C4 − 11C2 + 3)]

C1 = (8C4 − 8C2 + 9)/(8S4)

C2 = (3840C12 − 4096C10 − 2592C8 − 1008C6 + 5944C4 − 1830C2 + 147)
/[512S10(6C2 − 1)]

Table C.1: Fifth-order gravity wave coefficients [Skjelbreia and Hendrickson 1961]
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S = sech(2kd)

C = 1 − S

A11 = 1/ sinh(kd)

A22 = 3S2/(2C2)

A31 = (−4 − 20S + 10S2 − 13S3)/[8 sinh(kd)C3]

A33 = (−2S2 + 11S3)/[8 sinh(kd)C3]

A42 = (12S − 14S2 − 264S3 − 45S4 − 13S5)/(24C5)

A44 = (10S3 − 174S4 + 291S5 + 278S6)/[48(3 + 2S)C5]

A51 = (−1184 + 32S + 13232S2 + 21712S3 + 20940S4 + 12554 ∗ S5 − 500S6 − 3341S7 − 670S8)
/[64 sinh(kd)(3 + 2S)(4 + S)C6]

A53 = (4S + 105S2 + 198S3 − 1376S4 − 1302S5 − 117S6 + 58S7)
/[32 sinh(kd)(3 + 2S)C6]

A55 = (−6S3 + 272S4 − 1552S5 + 852S6 + 2029S7 + 430S8)
/[64 sinh(kd)(3 + 2S)(4 + S)C6]

B22 = coth(kd)(1 + 2S)/(2C)

B31 = −3(1 + 3S + 3S2 + 2S3)/(8C3)

B42 = coth(kd)(6 − 26S − 182S2 − 204S3 − 25S4 + 26S5)/[6(3 + 2S)C4]

B44 = coth(kd)(24 + 92S + 122S2 + 66S3 + 67S4 + 34S5)/[24(3 + 2S)C4]

B53 = 9(132 + 17S − 2216S2 − 5897S3 − 6292S4 − 2687S5 + 194S6 + 467S7 + 82S8)
/[128(3 + 2S)(4 + S)C6)

B55 = 5(300 + 1579S + 3176S2 + 2949S3 + 1188S4 + 675S5 + 1326S6 + 827S7 + 130S8)
/[384(3 + 2S)(4 + S)C6]

C0 =
√

tanh(kd)

C2 = C0(2 + 7S2)/(4C2)

C4 = C0(4 + 32S − 116S2 − 400S3 − 71S4 + 146S5)/(32C5)

Table C.2: Fifth-order gravity wave coefficients [Fenton 1985]
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Appendix D

FLUENT R© Multiphase Model

A boundary element scheme based on potential flow cannot model the effects

of viscosity on the ventilating as well as non-ventilating water entry of bodies. An-

other feature of the flow that is overlooked is the formation of spray. An important

characteristic of high-speed water-entry of bodies is the formation of jets along the

wetted part. In a real fluid, these jets quickly break-up into spray under the influ-

ence of surface-tension combined with the effects of shear at the air-water interface

[Greenhow and Lin 1983, Brennen 2005]. The BEM scheme, as shown in the results

in the previous chapters on wetted and ventilating entry, can capture the formation

of the jet and sustain its growth quite well. It cannot, however, model the break-up

of the jet into spray as it keeps the free-surface body intersection point on the body

at all times, neglects the effect of surface tension and ignores the dynamic effects of

the surrounding air. It is important to understand the effects of spray as it tends to

reduce the effective wetted part of the body during surface entry.

An ANSYS R© FLUENT R© based model is used to study these effects. The model is

implemented for the water-entry of a wedge at different angles of attack and velocities

of entry. This section only summarizes the two-main aspects of the FLUENT R© model

(a) multiphase flow to deal with the air-water interface (b) dynamic meshing to deal

with the vertical translation of the wedge.
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D.1 Multiphase flow

It is necessary to consider a multiphase flow since the wedge moves from an air-

phase to a water-phase. FLUENT R© offers three schemes to model such flows (i) the

Volume of Fluid (VOF) model (ii) the mixture model, and (iii) the Eulerian model.

These three schemes are classified under the Euler-Euler approach where the differ-

ent phases are treated mathematically as interpenetrating continua [FLUENT Inc.,

Chapter 23 2006]. Each of these models is suitable for a specific class of applications.

Applications of the Eulerian multiphase model include bubble columns, risers,

particle suspension, and fluidized beds. The mixture model is designed for two or

more phases (fluid or particulate) and for flows with low loading or that are bubbly.

An important feature of the mixture model is that it is possible to specify relative

velocities for the dispersed phases. A major application of the mixture model is

the prediction of cavitation. Typical application of the VOF model include the

prediction of jet breakup, the motion of large bubbles in a liquid, the motion of

liquid after a dam break, and the steady or transient tracking of any liquid-gas

interface. Compared to the other two models, the VOF model is the most ideal for

modeling the ventilating and non-ventilating water-entry problem.

D.2 Dynamic Mesh

The water-entry simulation involves the rigid-body motion of the wedge and this

is specified via a user-defined-function feature (UDF) in FLUENT R©. However, along

with the motion of the hydrofoil, the mesh around it has to be dynamically changed to

account for the motion related deformation. Initial studies were done using a spring-

based-smoothing method, a scheme in which the edges between any two mesh nodes

are idealized as a network of interconnected springs. This is combined with a local

remeshing method to improve the mesh quality based on the maximum skewness

permitted and, the minimum and maximum length scales of the mesh. Even though
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the scheme is easier to implement, initial studies indicated that it was difficult to

maintain a good mesh quality along the air-water interface, which is critical to the

simulation.

An alternative dynamic meshing scheme is based on the concept of layering -

the addition or removal of layers of cell adjacent to a moving boundary, based on

the height of the layer adjacent to a moving surface. The dynamic mesh model in

FLUENT R© allows one to specify an ideal layer height on each moving boundary.

The layer of cells adjacent to the moving boundary (layer j in Figure ) is split or

merged with the layer of cells next to it (layer i in Figure ) based on the height (h) of

the cells in layer j. If the cells in layer j are expanding, the cell heights are allowed

to increase until

hmin < (1 + αs)hideal (D.1)

where hmin is the minimum cell height of cell layer j, hideal is the ideal cell height,

and αs is the layer split factor. When this condition is met, the cells are split based

on the specified layering option: constant height or constant ratio.

If the cells in layer j are being compressed, they can be compressed until

hmin < αchideal (D.2)

where αc is the layer collapse factor. When this condition is met, the compressed

layer of cells is merged into the layer of cells above the compressed layer; i.e., the

cells in layer j are merged with those in layer i.

One of the limitations of the layering method is that the moving boundary has

to be perpendicular to the direction of motion and this is not so in most cases of

water-entry. An alternate way is to let the entire grid, except its top and bottom

boundaries, translate along with the wedge. The main aspects of the layering method

are as follows:
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Layer i

Layer jh

Moving Boundary

Figure D.1: Dynamic layering method (figure taken from [FLUENT Inc., Chapter
11 2006])

(i) The overall grid around the wedge is divided into three areas - top, middle and

bottom (as seen in Figure D.2).

(ii) The first layer of cells in the top-area adjacent to the top boundary expands,

shown in Figure D.2 as the Expansion Zone, as the grid moves vertically down-

ward. This layer grows until the expansion criteria for the cell height, Eqn.

D.1, is met. The cell layer is then split into two or more layers depending on

the specified ideal height. This process is repeated during the course of the

simulation adding new cell layers to the top-area.

(iii) The downward movement of the grid has the opposite effect in the bottom-area.

The first layer of cells adjacent to the bottom boundary in the bottom-area,

shown in Figure D.2 as the Compression Zone, shrinks until the compression

criteria for the cell height, Eqn. D.2, is met. Once this criteria is reached, the

cell layer gets absorbed into the adjacent cell layers and removes it from the

grid. This process repeats itself during the simulation removing cell layers from

the bottom-area.
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(iv) The middle-area neither grows nor shrinks in size maintaining an adequate

resolution required to resolve the air-water interface accurately.

The whole process of expansion and compression is shown in Figure D.2. The

initial configuration is shown at time t = t0. The top-area expands while the bottom-

area shrinks as the grid moves downward with a velocity Vw. This aspect is seen

in the configuration at times t = t1 and t = t2. t0, t1 and t2 (t0 < t1 < t2)

have no physical significance and are used only to represent the different stages in

the simulation. Note that Figure D.2 is only a schematic showing the areas and

boundaries of the grid. The actual discretization of the fluid domain is not shown.

D.3 Mesh Characteristics

The characteristics of the mesh are as follows:

(i) Region C : A Cartesian grid is used in this region to facilitate the use of the

layering method (layering method can only be applied to quadrilateral cell in

2D [FLUENT Inc., Chapter 11 2006]).

(ii) Region T : Triangular grid with boundary layer mesh on wedge.

(iii) Total number of cells ≈ 430000. Minimum face length 10−5c and maximum

face length 10−2c, where c is the chord length of the wedge.

(iv) Parameters controlling the layering scheme αs=0.4, αc=0.04 and hideal=10−2c.

The details of the mesh are shown in Figure D.3.

D.4 Boundary conditions and extents of domain

The boundary conditions and the extent of the numerical domain are as shown

in Figure D.4. The dimensions of the wedge are 0.5′′ (12.7 mm) by 6′′ (152.4 mm)
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in section with a 6′′ (152.4 mm) chord. This geometry is chosen to make compar-

isons with the experimental measurements of [Cox 1971]. Summary of boundary

conditions:

(i) W1,W2,W3 : Stationary walls.

(ii) W4 : Rigid Body Motion, No-slip wall

(iii) Pressure Outlet (volume of fraction of water = 0).

D.5 Solver characteristics

In the VOF model, the geo-reconstruct scheme is used to accurately capture the

air-water interface [FLUENT Inc., Chapter 23 2006]. The time stepping is deemed

first-order with the use of the dynamic mesh model. This is a limitation of the current

version of FLUENT [FLUENT Inc., Chapter 11 2006]. The SST k−ω model is used

to model turbulence.
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Top boundary

Bottom boundary

Air−water interface

EXPANSION ZONE

COMPRESSION ZONE

Top boundary

Bottom boundary

Air−water interface

Top boundary

Bottom boundary

Air−water interface

EXPANSION ZONE

COMPRESSION ZONE

EXPANSION ZONE

COMPRESSION ZONE

TOP

MIDDLE

BOTTOM

TOP

MIDDLE

BOTTOM

TOP

MIDDLE

BOTTOM

t = t0

t = t1

t = t2

Vw

Vw

Vw

Figure D.2: Dynamic layering method for water-entry problem, at time t = t0, t = t1
and t = t2, t0 < t1 < t2
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Figure D.3: Details of the mesh and magnified views of specific regions
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Figure D.4: Extents of domain and boundary conditions
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D.6 FLUENT - Input file for case generation

1 /file/read-case Wedge_10deg.msh.gz

2 /grid/reorder/reorder-domain

3 /solve/set/gradient-scheme yes

4
5 ; NOTE : Enables VOF SCHEME with "solve vof at every iteration",k-w SST

6 /define/models/multiphase vof 2 explicit 0.25 yes no yes

7 /define/models/viscous/kw-sst yes

8 /define/models/viscous/kw-transitional no

9
10 ; NOTE : Load Materials (Water and Air)

11 ; AIR : Primary Phase, WATER : Secondary Phase

12 /define/materials/copy fluid water-liquid

13 /define/phases/phase-domain phase-1 air no

14 /define/phases/phase-domain phase-2 water yes water-liquid

15
16 ; NOTE : Set Operating Conditions

17 /define/operating-conditions/reference-pressure-location 0.0 0.235

18 /define/operating-conditions/gravity yes 0.0 -9.81

19 /define/operating-conditions/operating-density yes 1.225

20
21 ; NOTE : Set Boundary Conditions

22 /define/boundary-conditions/wall side_right

23 mixture no yes shear-bc-spec-shear no 0 no 0 no 0 no 0

24 /define/boundary-conditions/wall side_left

25 mixture no yes shear-bc-spec-shear no 0 no 0 no 0 no 0

26 /define/boundary-conditions/pressure-outlet top water no 0

27 /define/boundary-conditions/pressure-outlet top mixture no 0 no yes no no yes 1 10

28
29 ; NOTE : Enable Dynamic Mesh Option with Layering

30 /define/models/dynamic-mesh yes no no

31 /define/models/dynamic-mesh-controls/smoothing no

32 /define/models/dynamic-mesh-controls/layering yes

33 /define/models/dynamic-mesh-controls/layering-parameter/constant-height yes

34
35 ; NOTE : Compile User-define-function for Rigid Body Motion

36 /define/user-defined/compiled-functions/compile "libudf" yes "Wedge.c" "" ""

37 /define/user-defined/compiled-functions/load "libudf"

38 /define/dynamic-zones/create fluid rigid-body wedge::libudf 0 0 0

39 /define/dynamic-zones/create wedge rigid-body wedge::libudf 0 0 0 fluid 0

40 /define/dynamic-zones/create top stationary fluid 0.002

41 /define/dynamic-zones/create bottom stationary fluid 0.002

42
43 ; NOTE : Set Discretization Schemes, Under-relaxation Parameters

44 ; Pressure - 13 (BODY-FORCE WEIGHTED)

45 ; Momenturm - 6 (THIRD-ORDER MUSCL)

46 ; Volume Fraction - 16 (GEO-RECONSTRUCT)
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47 ; Turbulence (k) - 1 (SECOND-ORDER UPWIND)

48 ; Turbulence (omega) - 1 (SECOND-ORDER UPWIND)

49 ; P-V Coupling - 22 (PISO)

50
51 /solve/set/discretization-scheme/pressure 13

52 /solve/set/discretization-scheme/mom 6

53 /solve/set/discretization-scheme/mp 16

54 /solve/set/discretization-scheme/k 1

55 /solve/set/discretization-scheme/omega 1

56 /solve/set/p-v-coupling 22

57 /solve/set/p-v-controls 1 1 no

58 /solve/set/under-relaxation/mom 0.5

59 /solve/set/under-relaxation/pressure 0.5

60
61 ; NOTE : Set initialization defaults

62 /solve/initialize/set-defaults/water mp 0

63 /solve/initialize/set-defaults/mixture k 0.001

64 /solve/initialize/set-defaults/mixture omega 1000

65
66 ; NOTE : Set residual monitors

67 ; NOTE : Set X-Force and Y-Force Monitors

68 /solve/monitors/residual/convergence-criteria 1e-6 1e-6 1e-6 1e-6 1e-6

69 /solve/monitors/residual/n-save 10000

70
71 ; NOTE : TUI option for VOF scheme

72 (rpsetvar ’vof/improved-wall-treatment? #t)

73 ; NOTE : Disable "reverse flow at top:pressure-outlet boundary" warning

74 /solve/set/flow-warnings no

75
76 ; NOTE : Set Auto-save options

77 /file/binary-files yes

78
79 ; NOTE : Set Reference Values

80 /report/reference-values/density 998.2

81 /report/reference-values/viscosity 0.001003

82 /report/reference-values/velocity 2.45

83
84 ; NOTE : Create Execute on demand commands

85 ; To be created at Run : time

86 ; Make sure Directories TECPLOT_VOF and TECPLOT_ALL exist in the RUN Directory

87 /solve/execute-commands/add-edit tec_export_all 100 "time-step"

88 "/file/export tecplot ../TECPLOT_ALL/Wedge_10deg_all_%4t

89 () air-vof x-velocity y-velocity velocity-magnitude

90 vorticity-mag pressure dynamic-pressure absolute-pressure ()"

91 /solve/execute-commands/add-edit write_time 1 "time-step"

92 "/define/user-defined execute-on-demand \"write_time::libudf\""

93
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94 ; NOTE : SAVE Case File : Ready for Simulation

95 ; TO Run the simulation use the input file Wedge_run.inp

96 /file/write-case Wedge_10deg.cas.gz

97
98 ; NOTE : Exit FLUENT

99 /exit yes

D.7 FLUENT - Input file for case execution

1 /file/read-case Wedge_10deg.cas.gz

2
3 /file/auto-save/append-file-name-with time-step 4

4 /file/auto-save/case-frequency 100

5 /file/auto-save/data-frequency 100

6 /file/auto-save/root-name "../RUN/Wedge_10deg.gz"

7 /file/set-batch-options no yes yes no

8
9 /adapt/mark-inout-rectangle yes no -0.5 0.5 -0.45 0.0

10 /solve/initialize/initialize-flow

11 (rpsetvar ’patch/vof? #t)

12 /solve/patch water () 0 () mp 1

13
14 /solve/set/time-step 5e-7

15 /solve/set/variable-time-stepping yes no 0.25 0.06342 1e-7 1e-5 0.5 2 10

16 /solve/dual-time-iterate 6342000 120

17
18 ; Write Case and Data File of Final Time-step

19 /file/write-case-data RUN/Wedge_10deg-%4t.cas.gz

20 /file/export tecplot ../TECPLOT_ALL/Wedge_10deg_all_%4t

21 () air-vof x-velocity y-velocity

22 velocity-magnitude vorticity-mag pressure dynamic-pressure absolute-pressure ()

23 /exit yes

D.8 GAMBIT - Journal file for mesh generation

1 / Wedge Chord Length

2 $Wedge_C = 6.0*0.0254

3 / Wedge Section Thickness

4 $Wedge_t = 0.5*0.0254

5 / Angle of Attack

6 $AOA = 12

7 / Initial Position of Wedge above free-surface

8 $Init_L = 5.0e-4

9 / Dimensions of Domain

10 $D_L = 0.500
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11 $DTop_h = 0.235

12 $DMid_h1 = 0.225

13 $DMid_h2 = 0.100

14 $DBot_h = 0.450

15 / Mesh File Name

16 $FNAME = "Wedge_"+NTOS($AOA)+"deg.msh"

17 / Create Domain Vertices

18 / Left (L), Right (R)

19 vertex create "L1" coordinates -0.5 0.235 0

20 vertex create "L2" coordinates -0.5 0.225 0

21 vertex create "L3" coordinates -0.5 -0.1 0

22 vertex create "L4" coordinates -0.5 -0.45 0

23 vertex create "R1" coordinates 0.5 0.235 0

24 vertex create "R2" coordinates 0.5 0.225 0

25 vertex create "R3" coordinates 0.5 -0.1 0

26 vertex create "R4" coordinates 0.5 -0.45 0

27 / Vertices of Edges

28 vertex create "P" coordinates 0 0 0

29 vertex create "A" coordinates -0.00635 0.1524 0

30 vertex create "B" coordinates 0.00635 0.1524 0

31 / Create Domain Edges

32 / Edges of Domain

33 edge create "EL1" straight "L1" "L2"

34 edge create "EL2" straight "L2" "L3"

35 edge create "EL3" straight "L3" "L4"

36 edge create "ER1" straight "R1" "R2"

37 edge create "ER2" straight "R2" "R3"

38 edge create "ER3" straight "R3" "R4"

39 edge create "EH1" straight "L1" "R1"

40 edge create "EH2" straight "L2" "R2"

41 edge create "EH3" straight "L3" "R3"

42 edge create "EH4" straight "L4" "R4"

43 / Edges of Wedge

44 edge create "PA" straight "P" "A"

45 edge create "PB" straight "P" "B"

46 edge create "AB" straight "A" "B"

47 / Rotate Wedge corresponding to Angle of Attack

48 edge move "PA" "PB" "AB" dangle -12 vector 0 0 1 origin 0 0 0

49 edge move "PA" "PB" "AB" offset 0 0.0005 0

50
51 / Create Temporary Edges for Mid-face creation

52 edge create "ET1" straight "B" "R2"

53 edge create "ET2" straight "A" "L2"

54 edge create "ET3" straight "P" "L3"

55 edge create "ET4" straight "P" "R3"

56
57 //////////////////////////////////////////////////////////////////

185



58 / Create Domain Faces

59 face create "FLUID_TOP" wireframe "ER1" "EH1" "EL1" "EH2" real

60 face create "FT1" wireframe "ET1" "EH2" "ET2" "AB" real

61 face create "FT2" wireframe "PA" "ET2" "EL2" "ET3" real

62 face create "FT3" wireframe "ET3" "EH3" "ET4" real

63 face create "FT4" wireframe "ET4" "ER2" "ET1" "PB" real

64 face unite faces "FT1" "FT2" "FT3" "FT4" real

65 face modify "FT1" label "FLUID_MIDDLE"

66 face create "FLUID_BOTTOM" wireframe "EH4" "ER3" "EH3" "EL3" real

67
68 //////////////////////////////////////////////////////////////////

69 / Mesh Domain Faces

70 edge mesh "PA" "PB" firstlength ratio1 0.0001 intervals 400

71 edge mesh "AB" successive ratio1 1 intervals 15

72 blayer create first 110 growth 1.005 total 115.05 rows 10 transition 1 trows \

73 0 wedge aspectratio

74 blayer attach "b_layer.1" face "FLUID_MIDDLE" "FLUID_MIDDLE" edge "PA" "PB" \

75 add

76 blayer create first 125 growth 1.002 total 127.014 rows 9 transition 1 trows \

77 0 wedge aspectratio

78 blayer attach "b_layer.2" face "FLUID_MIDDLE" edge "AB" add

79 sfunction create sourceedges "PA" "PB" "AB" growthrate 1.03 sizelimit 0.002 \

80 attachfaces "FLUID_MIDDLE" meshed

81 sfunction bgrid attachfaces "FLUID_MIDDLE"

82 face mesh "FLUID_MIDDLE" triangle size 1

83 edge link "EH2" "EH1" directions 0 0

84 edge link "EH3" "EH4" directions 0 0

85 edge mesh "EL1" "ER1" successive ratio1 1 size 0.002

86 edge mesh "EL3" "ER3" firstlength ratio1 0.002 intervals 40

87 face mesh "FLUID_TOP" map size 1

88 face mesh "FLUID_BOTTOM" map size 1

89
90 //////////////////////////////////////////////////////////////////

91 / Setup Boundary Conditions

92 solver select "FLUENT 5/6"

93 physics create "SIDE_LEFT" btype "WALL" edge "EL1" "EL2" "EL3"

94 physics create "SIDE_RIGHT" btype "WALL" edge "ER1" "ER2" "ER3"

95 physics create "TOP" btype "PRESSURE_OUTLET" edge "EH1"

96 physics create "BOTTOM" btype "WALL" edge "EH4"

97 physics create "FLUID" ctype "FLUID" face "FLUID_TOP" "FLUID_MIDDLE" \

98 "FLUID_BOTTOM"

99 physics create "WEDGE" btype "WALL" edge "PA" "AB" "PB"

100 export fluent5 "Wedge_12deg.msh" nozval

101 save

102 end force
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Appendix E

Axisymmetric BEM

This chapter provides a brief mathematical and numerical formulation of an

axisymmetric BEM model. The model presented here was developed as a precursor

to a 3D model and to serve as tool for verifying the 3D results for axisymmetric

problems. Results from the axisymmetric BEM are not included in this dissertation.

E.1 Mathematical Formulation

For a 3-D isotropic medium, the Green’s function can be represented as

G3D(p, q) =
1

4π rpq

(E.1)

where rpq =
√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2 is the distance between the field

point p and source point q. [Note: from further on, ()p represents the quantities

specified at the field point and ()q that at the source point]

The corresponding Boundary Integral Equation can be represented as

αp φp +

∫

S

φ
∂ψ

∂n
dSq =

∫

S

ψ
∂φ

∂n
dSq (E.2)

where ψ ≡ G3D(p, q). Assuming that all the boundary values have axial symmetry,

we can represent the 3−D Boundary Integral Equation in terms of cylindrical polar

coordinates (R, θ, z) as

αp φp +

∫

Γ

φ

2π
∫

0

∂ψ

∂n
RqdθqdΓq =

∫

Γ

∂φ

∂n

2π
∫

0

ψ RqdθqdΓq (E.3)
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or,

αp φp +

∫

Γ

φ
∂ψ

∂n
RqdΓq =

∫

Γ

ψ
∂φ

∂n
RqdΓq (E.4)

where ψ ≡ GAX(p, q) is the axi-symmetric Green’s function and can be represented

as

ψ = GAX(p, q) =

2π
∫

0

G3D(p, q)dθq =
K(m)

π
√
a+ b

(E.5)

where K(m) is the complete elliptic integral of the first kind, and

K(m) =

π
2
∫

0

dη
√

1 −m sin2 η

; 0 ≤ m < 1 (E.6)

with, m =
2b

a+ b
, a = R2

p +R2
q + (zp − zq)

2 and b = 2RpRq.

Note that (Rp, zp) and (Rq, zq) are the coordinates of the field point and source

point respectively in the cylindrical coordinate system. The coordinates of the field

and source points can be represented using the the transformation

x(p,q) = R(p,q) cos θ(p,q)

y(p,q) = R(p,q) sin θ(p,q) (E.7)

With (E.7), we have rpq =
√

R2
p +R2

q − 2RpRq cos(θp − θq) + (zp − zq)2.

The normal derivative of the axisymmetric Green’s function can be written as:

∂ψ

∂nq

=
∂ψ

∂Rq

(nR)q +
∂ψ

∂zq

(nz)q (E.8)

where,

∂ψ

∂Rq

=
1

π
√
a+ b

1

2Rq

[

R2
p −R2

q + (zp − zq)
2

a− b
E(m) −K(m)

]

∂ψ

∂zq

=
1

π
√
a+ b

(zp − zq)

a− b
E(m)

(E.9)
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and n = nRêR + nzêz is the normal to the surface (positive out of the domain).

E(m) is the complete elliptic integral of the second kind, and

E(m) =

π
2
∫

0

√

1 −m sin2 η dη; 0 ≤ m ≤ 1 (E.10)

The following properties of elliptic integrals are used to simplify the evaluation

of the influence coefficients [Hart et al. 1968, Hastings 1955]

E.1.1 Properties of Elliptic Integrals : Inequalities and Limiting
Behavior

(a)
π

2
= K(0) ≥ K(m) +

1

2
ln(1 −m) ≥ ln(4)

(b) K(m) =
1

2
ln

(

16

m1

)

+ O
[m1

2
ln(m1)

]

; m→ 1;m1 → 0 ;m1 = 1 −m

(c)
π

2
= E(0) ≥ E(m) ≥ E(1) = 1

E.1.2 Properties of Elliptic Integrals : Derivatives

(a) 2
dK(m)

dm
=

E(m)

m(1 −m)
− K(m)

m

(b) 2
dE(m)

dm
=
E(m) −K(m)

m

E.1.3 Properties of Elliptic Integrals : Polynomial Approximations
0 ≤ m < 1

K(m) = A(m1) −B(m1) log(m1)
E(m) = C(m1) −D(m1) log(m1)

}

(E.11)
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where m1 = 1 −m.

A(m1) =

10
∑

i=0

Aim
i
1











































































A0 = (+1) 0.13862 94361 11989 06188 344
A1 = (−1) 0.96573 59028 08562 55384 3
A2 = (−1) 0.30885 14627 13051 89866 31
A3 = (−1) 0.14938 01353 26871 65241 7
A4 = (−2) 0.87898 01874 55506 46777 5
A5 = (−2) 0.61796 27446 05331 76083 9
A6 = (−2) 0.68479 09282 62450 51197 3
A7 = (−2) 0.98489 29322 17689 37681 7
A8 = (−2) 0.80030 03980 64998 53708
A9 = (−2) 0.22966 34898 39695 86868 6
A10 = (−3) 0.13930 87857 00664 67279

(E.12)

B(m1) =

10
∑

i=0

Bim
i
1











































































B0 = (+0) 0.5
B1 = (+0) 0.12499 99999 99908 08051 006
B2 = (−1) 0.70312 49973 90383 52054 04
B3 = (−1) 0.48828 04190 68623 97978 35
B4 = (−1) 0.37377 73975 86236 04143 87
B5 = (−1) 0.30124 84901 28989 30266 25
B6 = (−1) 0.23931 91332 31107 90077 25
B7 = (−1) 0.15530 94163 19772 03876 74
B8 = (−2) 0.59739 04299 15542 91550 7
B9 = (−3) 0.92155 46349 63249 84638
B10 = (−4) 0.29700 28096 65556 1206

(E.13)

C(m1) =
10
∑

i=0

Cim
i
1











































































C0 = (+1) 0.1
C1 = (+0) 0.44314 71805 60889 52648 336
C2 = (−1) 0.56805 19456 75591 56648 14
C3 = (−1) 0.21831 81167 61304 81567 63
C4 = (−1) 0.11569 59574 52954 02174 53
C5 = (−2) 0.75950 93422 55943 22801 5
C6 = (−2) 0.78204 04060 95955 41727 4
C7 = (−1) 0.10770 63503 98664 55472 85
C8 = (−2) 0.86384 42173 60407 44302 4
C9 = (−2) 0.24685 03330 46072 27339 3
C10 = (−3) 0.14946 62175 71813 2677

(E.14)
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D(m1) =

10
∑

i=0

Dim
i
1











































































D0 = (+0) 0.0
D1 = (+0) 0.24999 99999 99901 77207 939
D2 = (−1) 0.93749 99972 12031 40657 95
D3 = (−1) 0.58593 66125 55314 91732 41
D4 = (−1) 0.42717 89054 73830 95644 27
D5 = (−1) 0.33478 94366 57616 26232 19
D6 = (−1) 0.26145 01470 03138 78931 72
D7 = (−1) 0.16804 02334 63633 84980 67
D8 = (−2) 0.64321 46586 43830 17665 5
D9 = (−3) 0.98983 32846 22538 47867
D10 = (−4) 0.31859 19565 55015 718

(E.15)

E.2 Influence Coefficients

For linear iso-parametric elements, we have

Rq(ξ) = N1(ξ)R1 + N2(ξ)R2

zq(ξ) = N1(ξ)z1 + N2(ξ)z2
(E.16)

and
φ(ξ) = N1(ξ)φ1 + N2(ξ)φ2

φn(ξ) = N1(ξ)(φn)1 + N2(ξ)(φn)2
(E.17)

where (R1, z1) and (R2, z2) are the coordinates of nodes (1) and (2) of the linear

element. φ and φn are the corresponding velocity potentials and normal velocities.

N1(ξ) and N2(ξ) are the shape functions of the form

N1(ξ) =
1

2
(1 − ξ) ; N2(ξ) =

1

2
(1 + ξ) (E.18)

where ξ is the intrinsic element coordinate (−1 ≤ ξ ≤ +1). For a generic linear

element, the following integral has to be evaluated

He =

∫

Γe

φ
∂ψ

∂n
RqdΓ

e
q (E.19)

and

Ge =

∫

Γe

∂φ

∂n
ψ RqdΓ

e
q (E.20)
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In terms of the intrinsic element coordinate ξ, we have dΓe
q = |J |dξ where |J | is the

Jacobian of the transformation. The Jacobian can be calculated as

|J | =
√

J2
1 + J2

2

J1 =
dRq

dξ
=
R2 −R1

2

J2 =
dzq

dξ
=
z2 − z1

2

⇒ |J | =
h

2

(E.21)

Thus,

He =

+1
∫

−1

[N1(ξ)φ1 +N2(ξ)φ2]
∂ψ

∂n
Rq(ξ)

h

2
dξ (E.22)

or He = φ1H1 + φ2H2, and

H1 =
h

2

+1
∫

−1

N1(ξ)
∂ψ

∂n
Rq(ξ)dξ

H2 =
h

2

+1
∫

−1

N2(ξ)
∂ψ

∂n
Rq(ξ)dξ

(E.23)

Similarly,

Ge =

+1
∫

−1

[N1(ξ)(φn)1 +N2(ξ)(φn)2] ψ Rq(ξ)
h

2
dξ (E.24)

or Ge = (φn)1G1 + (φn)2G2, and

G1 =
h

2

+1
∫

−1

N1(ξ)ψ Rq(ξ)dξ

G2 =
h

2

+1
∫

−1

N2(ξ)ψ Rq(ξ)dξ

(E.25)

Note that ψ and
∂ψ

∂n
are implicit functions of ξ. H1, H2, G1 and G2 are evaluated

using Gauss-Legendre Integration.
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E.2.1 Self-Influence Coefficients

To evaluate the influence coefficient, we start with the polynomial approxima-

tions for the elliptic integrals

K(m) = A(m1) −B(m1) log(m1)

E(m) = C(m1) −D(m1) log(m1)







where m1 = 1 −m (E.26)

We have m =
2b

a+ b
⇒ m1 =

a− b

a+ b
. Substituting this form in the polynomial

approximation, we have

K(m) = A(m1) +B(m1) log(a+ b) −B(m1) log(a− b) (E.27)

Also, by definition a − b = (Rp − Rq)
2 + (zp − zq)

2. Let Rf =
√
a− b and this

represents the Euclidean distance between the field and source points. Thus

K(m) = A(m1) +B(m1) log(a+ b) − 2B(m1) logRf

E(m) = C(m1) +D(m1) log(a+ b) − 2D(m1) logRf

(E.28)

Case (i) : Singularity at NODE (1) : as ξ → −1, Rf → 0

The polynomial approximations for the elliptic integrals are modified further to

account for the singularity at NODE (1) as follows:

K(m) = A(m1)+

B(m1) log(a+ b) − 2B(m1) log

(

2Rf

1 + ξ

)

+ 2B(m1) log

(

2

1 + ξ

)

E(m) = C(m1)+

D(m1) log(a+ b) − 2D(m1) log

(

2Rf

1 + ξ

)

+ 2D(m1) log

(

2

1 + ξ

)

(E.29)

Case (ii) : Singularity at NODE (2) : as ξ → +1, Rf → 0
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The polynomial approximations for the elliptic integrals are modified further to

account for the singularity at NODE (2) as follows:

K(m) = A(m1) +B(m1) log(a+ b) − 2B(m1) log

(

2Rf

1 − ξ

)

+ 2B(m1) log

(

2

1 − ξ

)

E(m) = C(m1) +D(m1) log(a+ b) − 2D(m1) log

(

2Rf

1 − ξ

)

+ 2D(m1) log

(

2

1 − ξ

)

(E.30)
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Appendix F

Multipole Expansions

Far field expansions for the dipole and source potentials due to a quadrilateral

panel can be derived from Taylor series involving the product of partial derivatives

of r−1 with appropriate moments of the panel area [Stratton 1941]. The source

potential can be expanded in the form [Hess and Smith 1967, Newman 1986]

Ψ =

∫∫

1

r
dξdη

=

∞
∑

m=0

∞
∑

n=0

(−1)m+n

m!n!
Imn

∂m+n

∂xm∂yn

1

r

(F.1)

where, r =
√

(x2 + y2 + z2) is the distance to the field point P in the panel coordi-

nate system and

Imn =

∫∫

ξmηndξdη (F.2)

is the corresponding moment of the panel about the origin. The above series can

be truncated at a finite order (m + n), provided the distance to the field point

is sufficiently large to ensure the desired degree of accuracy. To ensure sufficient

accuracy, let the series be truncated such that m + n = 4. Thus the multipole

expansion given by eqn. (F.1) can be written as
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Ψ = I00G

− (I10Gx + I01Gy)

+
1

2
(I20Gxx + 2I11Gxy + I02Gyy)

− 1

6
(I30Gxxx + 3I21Gxxy + 3I12Gxyy + I03Gyyy)

+
1

24
(I40Gxxxx + 4I31Gxxxy + 6I22Gxxyy + 4I13Gxyyy + I04Gyyyy)

(F.3)

where G = r−1. Note that I01 = I10 = 0 since the origin of the local panel coordinate

system is located at the centroid of the panel.

The corresponding dipole multipole expansion can be written as (with density

−4π over the panel)

Φ = I00F

− (I10Fx + I01Fy)

+
1

2
(I20Fxx + 2I11Fxy + I02Fyy)

− 1

6
(I30Fxxx + 3I21Fxxy + 3I12Fxyy + I03Fyyy)

+
1

24
(I40Fxxxx + 4I31Fxxxy + 6I22Fxxyy + 4I13Fxyyy + I04Fyyyy)

(F.4)

where F = zr−3.
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The derivatives in equations (F.3) and (F.4) are as follows:

G = r−1 F = zr−3

Gx = −xr−3 Fx = −3zxr−5

Gy = −yr−3 Fy = −3zyr−5

Gxx = 3x2r−5 − r−3 Fxx = 15zx2r−7 − 3zr−5

Gxy = 3xyr−5 Fxy = 15zxyr−7

Gyy = 3y2r−5 − r−3 Fyy = 15zy2r−7 − 3zr−5

Gxxx = −15x3r−7 + 9xr−5 Fxxx = −105zx3r−9 + 45zxr−7

Gxxy = −15x2yr−7 + 3yr−5 Fxxy = −105zx2yr−9 + 15zyr−7

Gxyy = −15xy2r−7 + 3xr−5 Fxyy = −105zxy2r−9 + 15zxr−7

Gyyy = −15y3r−7 + 9yr−5 Fyyy = −105zy3r−9 + 45zyr−7

Gxxxx = 105x4r−9 − 90x2r−7 + 9r−5 Fxxxx = 945zx4r−11 − 630zx2r−9 + 45zr−7

Gxxxy = 105x3yr−9 − 45xyr−7 Fxxxy = 945zx3yr−11 − 315zxyr−9

Gxxyy = 105x2y2r−9 − 15(x2 + y2)r−7 + 3r−5 Fxxyy = 945zx2y2r−11 − 105z(x2 + y2)r−9 + 15zr−7

Gxyyy = 105xy3r−9 − 45xyr−7 Fxyyy = 945zxy3r−11 − 315zxyr−9

Gyyyy = 105y4r−9 − 90y2r−7 + 9r−5 Fyyyy = 945zy4r−11 − 630zy2r−9 + 45zr−7

The final form of the multipole expansions for the source and dipole potentials

obtained by substituting the above derivatives can be written as

Ψ = T1 + T3 + T
(1)
5 + T

(2)
5 + T7 + T9 (F.5)

Φ = zr−2[T1 + 3T3 + 5T
(1)
5 + 5T

(2)
5 + 7T7 + 9T9] (F.6)
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where,

rT1 = I ′00 (F.7)

r3T3 = −1

3
(I ′20 + I ′02) (F.8)

r5T
(1)
5 = (x2I ′20 + xyI ′11 + y2I ′02) (F.9)

r5T
(2)
5 = −x(I ′30 + I ′12) − y(I ′03 + I ′21) +

1

10
(I ′40 + 2I ′22 + I ′04) (F.10)

r7T7 =
5

3

[

x3I ′30 + 3xy (xI ′21 + yI ′12) + y3I ′03
]

(F.11)

− x2(I ′40 + I ′22) − xy(I ′31 + I ′13) − y2(I ′22 + I ′04) (F.12)

r9T9 =
7

6

[

x4I ′40 + 2xy(x2I ′31 + 3xyI ′22 + y2I ′13) + y4I ′04
]

(F.13)

and I ′00 through I ′04 are moments scaled in the following manner

I ′00 = I00

I ′20 =
3

2
I20; I ′11 = 3I11; I ′02 =

3

2
I02;

I ′30 =
3

2
I30; I ′21 =

3

2
I21; I ′12 =

3

2
I12; I ′02 =

3

2
I02

I ′40 =
15

4
I40; I ′31 =

15

2
I31; I ′22 =

15

4
I22; I ′13 =

15

2
I13; I ′04 =

15

4
I04

A two-term multipole expansion (m+ n = 2) for the source and dipole potentials is

equivalent to

Ψ = T1 + T3 + T
(1)
5 (F.14)

Φ = zr−2[T1 + 3T3 + 5T
(1)
5 ] (F.15)

and a four-term expansion (m+ n = 4) is equivalent to

Ψ = T1 + T3 + T
(1)
5 + T

(2)
5 + T7 + T9 (F.16)

Φ = zr−2[T1 + 3T3 + 5T
(1)
5 + 5T

(2)
5 + 7T7 + 9T9] (F.17)
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