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Traditional boundary element methods (BEM) coupled with integral

boundary layer solvers can efficiently model flows around hydrofoils and pro-

pellers with sharp trailing edges. However, numerical prediction of the per-

formances of propellers with non-zero trailing edge thickness has long been a

difficult problem, due to the flow separation behind the trailing edge. In the

present work, a viscous/inviscid interactive (VII) approach is first applied to

predict the performances of hydrofoils and propellers with non-zero trailing

edge thickness. The emphasis has been put on developing VII BEM models

for flow separation.

The investigation starts from a 2D hydrofoil. The current method uses

an iterative scheme to find a non-lifting closing extension behind the finite

trailing edge. Two kinds of schemes are applied for the iteration process re-

spectively. (1) A flap extension with one or two degrees of freedom, running

vii



in fully-wetted condition to find a non-lifting extension. (2) The extension

is treated like a cavity surface, but with a non-constant cavity pressure dis-

tribution. The results from these schemes are compared with those from a

commercial RANS Solver (Fluent). The correlation between the Fluent and

BEM results shows that the current method (with both kinds of iteration

schemes) gives results within reasonable accuracy, at a very small fraction of

the computational effort.

Next, the current schemes using flap extensions are extended to 3D

propeller flows. The 3D models are developed so that all the span-wise strips

of the propeller satisfy similar conditions to those used in 2D. A propeller

with significant non-zero trailing edge thickness is analyzed, using several 3D

models, and the results are compared with existing experimental data.

Finally, the VII BEM solver is also applied to hydrofoils with partial-

cavitation, and the results are compared with those from a RANS solver cou-

pled with a mixture model.
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Chapter 1

Introduction

1.1 Motivation and Background

Boundary element method (BEM) has long been used as an efficient

tool for modeling flows around propellers with sharp trailing edges. Coupled

with an integral boundary layer solver (XFOIL), viscous effects near the pro-

peller surface can be included. Numerical tools based on this method, such as

CAV2DBL and PROPCAV coupled with XFOIL, have been found to be ro-

bust in predicting the performance of fully-wetted or cavitating hydrofoils and

propellers. However, real propellers always have finite trailing edge thickness

due to many reasons. For example, (1) At higher propeller radius, anti-singing

edges are normally applied, which results in a small finite trailing edge thick-

ness; (2) At lower propeller radius, relatively thick or rounded trailing edges

are used due to structural reasons. Sharp trailing edges easily get damaged.

No matter what the reason, this feature generates a flow separation zone be-

hind the finite trailing edge, which makes it difficult to apply boundary element

method. Other viscous flow solvers, such as RANS and LES, are more suitable

for this type of open trailing edges. (For example, [Rhee et al. 2005] applies a

RANS solver to a cavitating propeller with closed sections.) However, A fine

grid needs to be built downstream of the trailing edge so that unsteady vortex

1



shedding at the trailing edge can be modeled. These methods, thus, become

very expensive and time-consuming to apply to propeller design. Therefore,

it is essential to develop a numerical tool based on BEM, which predicts the

performances of hydrofoils and propellers with non-zero trailing edge thickness.

Experimental evidence [Russel 1958] shows that the separated zone

behind the finite trailing edge forms a closed cavity that separates from the

potential flow around the propeller. [Kudo and Ukon 1994] have developed

a 3D vortex-lattice lifting surface method which solves the steady problem of

cavitating propeller with a flow separation zone behind. Their model assumed

the base pressure over the separated zone to be constant and equal to the

vapor pressure. Furthermore, [Kudo and Kinnas 1995] studied the influence

of the length of the separated zone, which affects the pressure and cavity

length near the blade trailing edge under fully-wetted and partially-cavitating

conditions. Later, [Young and Kinnas 2003b] developed a boundary element

method to model supercavitating propeller flows using the same assumption.

They used a closing rigid extension behind the finite trailing edge and treated

the separation zone as an additional cavitation bubble. Their results showed

that the geometry of the closing zone does not affect the solution as long as

it is inside the supercavity bubble. However, the assumption used in these

methods is not accurate enough. Also, these methods fail to apply to fully-

wetted hydrofoil and propeller flows.
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1.2 Objectives and Organization

The objective of the present work is to develop more rigorous explana-

tions on the extensions, which are used for approximating the flow separation

zone. Specifically, the mean closing streamlines after the finite trailing edge

are represented by the rigid extension. In 2D, the results from these methods

are validated by comparing with Fluent results. These methods are then ap-

plied in three dimensions, with the same assumptions applied on each strip of

the propeller blade. The results are compared with experimental data in 3D.

The thesis is organized into five chapters.

Chapter 1 gives the motivation, background and objectives of this

study. A review of the previous study is also included.

Chapter 2 presents a summary of literature review on boundary element

method, viscous solver (XFOIL), and the coupling algorithm. The explanation

of the viscous solver and the coupling algorithm is taken from [Sun 2008]

In Chapter 3, a systematic 2D study of a hydrofoil with non-zero trailing

edge thickness is presented. The mathematical formulation and numerical

implementation of current models are given. The validation of these models

are tested by comparing the results with those from Fluent.

In Chapter 4, the models developed in 2D are extended to 3D pro-

peller flows. The results are compared with experimental measurements and

extensive convergence studies are presented.

In Chapter 5, The VII BEM solver with application to partial-cavitating

3



hydrofoil is discussed. The results are compared with those from a RANS

mixture model.

Chapter 6 summarizes the present work and proposes the recommen-

dations for future research.
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Chapter 2

Literature and Method Review

In this chapter, a low-order potential based boundary element method,

which is used to model flows around hydrofoils and propellers, is reviewed first.

The theory of boundary layer analysis (XFOIL), via which the viscous effects

are included, is then summarized. At last, the coupling algorithm between the

inviscid and viscous solution is reviewed.

2.1 Boundary Element Method

Boundary element method has proved to be very effective in solving

potential flows around hydrofoils and propellers. The perturbation potential

based panel method was introduced for the analysis of non-cavitating propeller

performance in steady flow by [Lee 1987, Kerwin et al. 1987]. Later, [Kinnas

and Fine 1992; 1993, Fine and Kinnas 1993] developed several BEM cavitation

models for analyzing flows around cavitating hydrofoils and cavitating pro-

pellers. This method was named PROPCAV. Over the years, improvements

were made and new features were included in PROPCAV. The latest version is

able to deal with partial cavitating, super cavitating, and surface-piecing pro-

pellers [Young and Kinnas 2003a], ducted propellers [Lee and Kinnas 2006],
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tunnel effects [Lee and Kinnas 2005], tip vortex cavitation and unsteady wake

alignment [Lee and Kinnas 2004] and inclusion of viscous effects via coupling

with a boundary layer solver [Sun and Kinnas 2008].

The governing equations and boundary conditions in the case of non-

cavitating hydrofoils and open propellers are summarized as follows for the sake

of explanation. For the propeller case, a blade fixed coordinate system (x, y, z),

which rotates with the propeller, is used. Therefore, the inflow velocity ~qin

with respect to the propeller can be expressed as the sum of the inflow wake

velocity, ~qw, and the propeller’s angular velocity ~ω, at a given location ~x:

~qin(x, y, z, t) = ~qw(x, r, θB − ωt) + ~ω × ~x (2.1)

where r =
√

y2 + z2, θB = arctan(z/y), and ~x = (x, y, z).

With the assumption that the resulting flow is incompressible, inviscid

and irrotational, the total velocity ~q(x, y, z, t) at any point in the fluid domain

can be expressed as follows:

~q(x, y, z, t) = ~qin(x, y, z, t) + ∇φ(x, y, z, t) (2.2)

where φ(x, y, z, t) is the perturbation potential, which satisfies the Laplace’s

equation, i.e. the governing equation for incompressible potential flow:

∇2φ = 0 (2.3)

The Green’s third identity is next applied to solve the Laplace’s equation for

the perturbation potential in the flow domain.
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2.1.1 Governing equation

The perturbation potential, φ(x, y, z, t), at any point p(x, y, z) located

on the wetted body (hydrofoil or propeller blade) surface, SWB(t), must satisfy

Green’s third identity:

φ(~x, t)

2
=

∫

SWB(t)

[

−φq(~x, t)
∂G(p; q)

∂nq(t)
+ G(p; q)

∂φq(~x, t)

∂nq(t)

]

dS

−
∫

SW (t)

∆φW (~x, t)
∂G(p; q)

∂nq(t)
dS

(2.4)

where q and p correspond to the variable point and the field point, respectively.

G(p; q) is the Green’s function. For the 3D propeller case, G(p; q) = − 1
4πR(p;q)

;

For the 2D hydrofoil case, G(p; q) = ln r
2π

, with R(p; q) being the distance be-

tween the field point p and the variable point q. ~nq is the unit vector normal

to the integration surface, with the positive direction pointing into the fluid

domain. SW (t) is the trailing wake sheet of the propeller blade or hydrofoil.

∆φW is the potential jump across the trailing wake sheet.

Equation (2.4) implies that the solution potential φ(~x, t) on the blade

or hydrofoil surfaces can be expressed by distributing sources and dipoles over

the wetted surface, and dipoles only on the trailing wake surfaces behind the

propeller blade or hydrofoil.
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2.1.2 Boundary conditions

In order to uniquely determine the solution of Equation (2.4), appro-

priate boundary conditions have to be applied on the exact flow domain.

1. Kinematic boundary condition: The flow on the wetted blade or hy-

drofoil is tangent to the wetted body surfaces.

∂φ

∂n
= −~qin(x, y, z, t) · ~n (2.5)

2. Kutta condition: The flow velocity at the trailing edge of the blade or

hydrofoil is finite.

|∇φ| < ∞ (2.6)

For the 2D hydrofoil case, a Morino’s Kutta condition is applied at the trailing

edge; For the 3D propeller case, an iterative pressure Kutta condition is applied

at the blade trailing edge to ensure that the pressures on the suction and

pressure sides are equal.[Kerwin et al. 1987, Kinnas and Hsin 1992]

3. Condition at infinity: The flow velocity vanishes at the far field.

∇φ → 0 (2.7)

The solutions, φ on the wetted surface can then be determined by

solving Equation (2.4) together with the boundary conditions (2.5), (2.6) and

(2.7).

2.2 The 2D integral boundary layer analysis

According to Jessup’s work [Jessup 1989], the viscous flow in the bound-

ary layer of the propeller blade can be assumed to develop only along the
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stream-wise direction. The growth of the boundary layer in the cross flow di-

rection is negligible. In this study, Drela’s 2D integral boundary layer analysis

code (XFOIL) is used to solve the boundary layer flow along the stream-wise

direction [Drela 1989]. XFOIL employs a two-equation lagged dissipation inte-

gral method including the treatment of laminar and turbulent boundary layers,

and is able to represent accurately flows with limited separation regions. The

prediction of transition is based on an eN -type amplification formulation. De-

tailed information of this method can be found in [Drela 1989]. The boundary

layer equations are summarized here for the sake of completeness.

For a given distribution of the boundary layer edge velocity Ue, the

boundary layer parameters can be determined by solving the momentum in-

tegral equation (2.8) and the kinetic energy shape factor equation (2.9) with

a third closure equation (2.10) or (2.11)

Momentum Equation

dθ

ds
+ (2 + H)

θ

Ue

dUe

ds
=

Cf

2
(2.8)

Kinetic Energy Equation

θ
dH∗

ds
+ [2H∗∗ + H∗(1 − H)]

θ

Ue

dUe

ds
= 2CD − H∗Cf

2
(2.9)

Turbulent Closure

δ

Cτ

dCτ

ds
= 5.6[C

1/2
τEQ − C1/2

τ ] + 2δ × { 4

3δ∗
[
Cf

2
− (

Hk − 1

6.7Hk

)2] − 1

Ue

dUe

ds
} (2.10)

Equation (2.10) is the rate equation for the maximum shear stress co-

efficient Cτ , and is used when the viscous flow has transitioned to turbulent
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flow. In laminar regions, a rate equation (2.11), which models the growth

of the amplitude ñ of the most amplified Tollmien-Schlichting wave, is used

instead.

dñ

ds
=

dñ(Hk)

dReθ

dReθ(Hk, θ)

ds
(2.11)

The empirical relation dñ(Hk)/dReθ is a correlation of spatial growth rates

computed from solutions to Orr-Sommerfeld equation, and dReθ(Hk, θ)/ds is

obtained from the properties of Falkner-Scan profile family. The transition

point is defined by the location where ñ reaches a user-specified critical value

ñcrit. The parameter in practice is used to represent the background distur-

bance level.

Equation (2.8) and Equation (2.9) represent momentum conservation

and kinetic energy along the stream-wise direction. s is the stream-wise coordi-

nate, δ∗ =
∫

(1− u
Ue

)dz is the displacement thickness. and θ =
∫

u
Ue

(1− u
Ue

)dz

is the momentum thickness, where z is the vertical distance normal to the

blade. Cf = τwall

0.5ρU2
e

is the friction coefficient, and Cf = 0 is enforced in the

wake. Definition of the momentum thickness shape factor H , the kinetic en-

ergy shape factor H∗, the density shape factor H∗∗, the dissipation coefficient

CD, the shear stress coefficient CτEQ, the kinematic shape factor Hk and the

momentum thickness Reynolds number Reθ can be found in [Sun 2008].

Three primary variables are chosen for the above boundary layer gov-

erning equations: the mass defect m, the momentum thickness θ, and the

amplitude growth rate ñ for the laminar regions or the square root of the

maximum shear stress coefficient C
1/2
τ . The mass defect m is defined as the

10



product of edge velocity Ue and the mass displacement thickness δ∗,

m = Ueδ
∗ (2.12)

For laminar flow, Equations (2.8) and (2.9) are closed with Equation (2.11) to

solve for m, θ and ñ. For turbulent flow, Equations (2.8), (2.9) and (2.10) are

solved for m, θ and Cτ

2.3 The Viscous/Inviscid Flow Coupling

The coupling of the outer inviscid flow and inner boundary layer flow

over the propeller blade is based on the strip theory assumption [Coney 1989,

Hufford et al. 1994]. The developed boundary layers are assumed to be two

dimensional along strips of the propeller blade, and the boundary layer in the

cross flow direction is ignored. According to [Groves and Chang 1984, Jessup

1989], these strips can be assumed to be along the constant radial direction of

the propeller blade.

The inviscid model (PROPCAV) and the 2D integral boundary layer

analysis (XFOIL) are strongly coupled along these blade strips through the

wall transpiration model. In the wall transpiration model, ”blowing” sources

which represent the viscosity effects are added to the panels on the blade and

wake surface. The effect of these ”blowing” sources is to replace the potential

flow away from the body, and to create a component of velocity normal to the

body. [Lighthill 2006, Nishida and Drela 1995]

Strength of ”blowing” source σ̂ is related to the rate of growth of the
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boundary layer, and defined as:

σ̂ =
dm

ds
=

d(Ueδ
∗)

ds
(2.13)

where s is the local coordinate along each constant radial strip, Ue is the

velocity at the edge of the viscous boundary layer, and δ∗ is the displacement

thickness.

2.3.1 Modified Green’s Formulation

The outer flow, including the viscous boundary layer effects, can be

represented by adding the ”blowing” sources to the Green’s third identity,

Equation (2.4):

φ(~x, t)

2
=

∫

SWB(t)

[

−φq(~x, t)
∂G(p; q)

∂nq(t)
+ G(p; q)

∂φq(~x, t)

∂nq(t)

]

dS

−
∫

SW (t)

∆φW (~x, t)
∂G(p; q)

∂nq(t)
dS +

∫

SWB(t)∪SW (t)

σ̂G(p; q)dS

(2.14)

In current approach, this equation is applied in 2D along each strip and is used

to develop the velocity correction equation (2.15). [Kinnas et al. 1994] Both

the perturbation potential φ and the ”blowing” source strength σ̂ in Equation

(2.14) are unknown and to be solved by coupling the potential and boundary

layer equations.

2.3.2 The Coupling Algorithm

The integral boundary layer equations are coupled with the inviscid

solution through the edge velocity of the boundary layer at each blade strip.
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According to [Drela 1989], the edge velocity can be expressed in terms of the

known inviscid component and a correction involving the unknown blowing

sources through the mass defect:

Ue = U inv
e + ℑ{m} = U inv

e + ℑ{Ueδ
∗} (2.15)

where Ue is velocity at the edge of the boundary layer along each blade strip,

U inv
e is the inviscid component of the edge velocity. m = Ueδ

∗ is the mass

defect term, and ℑ is a geometry dependent operator, which can be found in

[Sun 2008]

Equation (2.15) gives the solution to the potential flow for any dis-

tribution of mass defect on the blade and wake. The system of equations is

elliptic in nature because of the global influence of the mass defect m on the

edge velocity Ue. The solution can be found using a Newton iterative solver

[Drela 1989]. For a given distribution of Ue, the mass defect term m and the

momentum thickness θ can be determined from the boundary layer equations.

In the first iteration, the edge velocity distribution from the inviscid solution

U inv
e is used as the given Ue to solve the boundary layer equations. Once the

mass defect term m is obtained, Ue will be updated via Equation (2.15), and

then the boundary layer equations are solved again. The process iterates until

convergence is achieved.
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Chapter 3

Methodology and Results in 2D

3.1 Fluent analysis for a hydrofoil

The flow around a 2D NACA00 hydrofoil (fmax/c = 2% ; Tmax/C =

4% ), with a vertical cut at 90% chord length (treated as a finite trailing edge)

is modeled in Fluent. A fine grid is built around the hydrofoil, especially near

the finite trailing edge (thickness = 0.9% of chord length), as shown in Figure

3.2. The Reynolds number is chosen as 107 and 5 degrees angle of attack is

used in this case.

The details of numerical schemes used in Fluent simulation are listed in

Table 3.1, and Figure 3.1 shows the computational domain with the boundary

conditions. Both steady and unsteady cases are run. The unsteady results

are time-averaged in a vortex shedding period, and are found not to be too

different from the steady results. The reason that the unsteadiness is not that

important is that the vortex shedding is not very strong behind a small finite

trailing edge.
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Table 3.1: Numerical schemes used in Fluent simulation

Turbulence modeling Reynolds Stress Model (RSM)
Near wall treatment Standard Wall Function

Unsteady formulation First order implicit in time
Discretization of momentum,

turbulent kinetic energy, Second order upwind
turbulent dissipation rate and Reynolds stresses

Discretization of pressure Standard
Pressure-velocity coupling SIMPLE

Residuals all at 10−6

X

Y

-5 0 5 10

-4

-2

0

2

4

6

8

velocity inlet

velocity inlet

velocity inlet

outflow

Figure 3.1: Computational domain and boundary conditions
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Figure 3.2: Grid details near the hydrofoil and finite trailing edge (195104
elements in total)
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The pressure distributions on the hydrofoil and near the trailing edge

are shown in Figure 3.3. Figure 3.3(a) shows that the pressure distribution

on the upper side and lower side closes at the finite trailing edge. And Fig-

ure 3.3(a) shows that the pressures on the two sides of the surfaces of the

separation zone does not change much in y direction, which excludes the lift

on the separation zone. These features of pressure distribution provide the

basis of the iteration process coupled in the viscous/inviscid interactive (VII)

BEM approach. The closing extension used in the BEM Solver is basically an

approximation of the separation zone.

As the end of the section of Fluent analysis, the y+ of the first grid

point near the hydrofoil is plotted in Figure 3.4. Most of the values fall in

a reasonable region for standard wall function. Specifically, [Fluent 2007]

suggests that the wall y+ value should be close to the lower bound of the

log-law region (y+ ≈ 30) for standard ‘wall functions.
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Figure 3.3: Pressure distribution from Fluent; (a) on the hydrofoil (b) near
the finite trailing edge
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Figure 3.4: yplus on the hydrofoil

3.2 Viscous/Inviscid interactive (VII) BEM approach

3.2.1 VII BEM Solver coupling with one degree of freedom itera-
tion method

Consider the same hydrofoil used in the Fluent analysis. A closing

extension of 10% of the chord length is added behind the trailing edge and the

last camber point on the extension is chosen as the control point (one degree

of freedom) to control the geometry of the extension. The whole extension
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is generated by interpolation of the original foil and the last point on the

extension. By moving the last point up and down, the extension moves like a

flapping tail, as shown in Figure 3.5. For the initial solution, the control point

last camber point

original finite thickness trailing edge

Figure 3.5: One degree of freedom closing extension behind the trailing edge

is set at an arbitrary vertical position. At each iteration, CAV2DBL (a 2D VII

BEM Solver) is used to solve for the pressure distribution on the hydrofoil.

This loop continues until a certain convergence condition is satisfied. There

are two choices of the convergence conditions: (1) Non-lifting condition: The

lifting force on the extension vanishes. (2) Pressure equivalence condition: The

pressures at the two sides of the finite trailing edge are equal to each other.

(Refer to Figure 3.3(a)). The Newton-Secant scheme is used to update the

position of the control point at each iteration.

For this case, the convergence criterion is set as CL < 10e − 7 (CL =

Lift
0.5·ρ·U2·chord

) or △Cp < 10e−5 (The non-dimensional pressure Cp is defined as

Cp = pressure
0.5·ρ·U2 ), It takes five iterations for non-lifting condition to converge and

four iterations for pressure equivalence condition to converge, respectively.

The pressure distribution on the hydrofoil (by using both conditions)
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is shown in Figure 3.6, with the comparison with Fluent result.

With sufficient grid resolution, the RANS solver is supposed to model

the flow separation with greater accuracy. Therefore, in this comparison, the

Fluent result is considered as the “correct” result. For the front part of the

hydrofoil, the correlation of pressure distribution is good, with only a small

difference. Some discrepancy exists near the actual trailing edge for both

conditions, but it can be found that the converged results are much better

than the initial solution for an arbitrary extension. (Note that in Figure 3.6,

x = 0.9 is the position of the actual trailing edge.)

However, the non-lifting condition and pressure equivalence condition

cannot be satisfied simultaneously in one degree of freedom iteration method.

Both of them have some deficiency when applied separately. Therefore, it is

necessary to develop a two degrees of freedom iteration method, in which both

conditions can be satisfied simultaneously. (Two unknowns are needed for

satisfying two conditions simultaneously.)
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Figure 3.6: Comparison of results from the one degree of freedom iteration
method and Fluent: (a) global result, (b) near the trailing edge
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3.2.2 VII BEM Solver coupling with two degrees of freedom itera-
tion method

Instead of controlling the extension geometry by using only the last

camber point, two camber points on the extension are chosen as the control

points (two degrees of freedom). In this case, the two points are set at x=0.93

and x=1, as shown in Figure 3.7. At the end of the iteration process, the

two conditions used in one degree of freedom iteration method can be satisfied

simultaneously. A Two-equation Newton-Raphson scheme is used to update

the positions of the two control points after each iteration. In this scheme, we

actual TE

control point 1

actual TE

control point 2

Figure 3.7: Two degrees of freedom closing extension behind the trailing edge
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have two unknowns. So the two equations CL(y1, y2) = 0 and ∆p(y1, y2) = 0

can be satisfied simultaneously. For this case, the convergence criterion is set

as CL < 10e−5 and △Cp < 10e−3, and it takes four iterations for the scheme

to converge.

The pressure distribution on the hydrofoil is shown in Figure 3.8, with

the comparison with Fluent result.

As shown in the figure, both conditions used in the one degree of free-

dom iteration method are satisfied. For an arbitrary extension, it affects not

only the pressure distribution near the trailing edge, but also the global result.

The improvement obtained by applying the two degrees of freedom iteration

method is significant because it corrects the global result, with only a small

discrepancy from the Fluent result near the trailing edge. The correction of

the global result is important in evaluation of the lifting force of the whole

hydrofoil.

The effect of extension length on pressure distribution is studied and

Figure 3.9 shows that its influence to pressure distribution in the front of the

trailing edge is negligible. This feature is useful because it allows us to use

an extension of arbitrary length within a reasonable range when applying this

scheme.
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Figure 3.8: Comparison of results from the two degrees of freedom iteration
method and Fluent: (a) global result, (b) near the trailing edge
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However, a deficiency of this method exists that even if the lifting force

on the extension vanishes, the pressure difference on the two sides at each

location is not equal to zero. This is largely due to the insufficiency of the

control of the extension geometry in this method. The camber line is controlled

by two points but the thickness form stays unchanged in the iteration process.

The following scheme is developed to overcome this difficulty.

3.2.3 Cavity-like scheme

This scheme is developed based on the iteration method for solving

partial-cavitating problems. BEM solver has been found to be effective to

model partial cavitation on suction side of a 2D hydrofoil. [Brewer and Kinnas

1997, Kinnas and Fine 1993]. In a cavitation problem, the pressure distribution

on the cavity surface is constant. If the two sides of the extension are treated

as two cavity surfaces, the scheme will give constant pressure distribution on

each side of the extension. Furthermore, if the pressures at the two sides are

equal to each other, an extension can be obtained using the condition that

the pressure difference at each location is zero. Besides, the previous scheme

for cavitation problem can be changed so that different profiles of pressure

distributions can be obtained on the extension surfaces.
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3.2.3.1 Mathematical Formulation

The perturbation potential, φ, must satisfy Green’s formula, a Fred-

holm integral equation of the second kind, on the foil and extension.

πφp =

∫

S

[

−φ
∂ ln R

∂n
+

∂φ

∂n
ln R

]

dS −
∫

W

△φw
∂ ln R

∂n
dS on S (3.1)

where S is the surface of the wetted foil and the cavity (extension) surface and

W is the surface of the wake. R is the distance from the surface element dS

to the point p. ∆φw is the potential jump in the wake.

On the actual foil and extension, the kinematic boundary condition is

satisfied so that the flow is tangent to the surface. (The cavitation model

assumes that the cavity surface is a streamline on which pressure is equal to

water vapor pressure.)

∂φ

∂n
= −∂Φin

∂n
= −U∞ · ~n (3.2)

On the extension (cavity-like surface), the dynamic boundary condition

is satisfied so that the pressure distribution (or velocity distribution) has a

certain profile on both sides of the extension.

∂φ

∂sc1
+

∂Φin

∂sc1
= qc1 [1 + x · Ratio] on the upper side (3.3)

∂φ

∂sc2
+

∂Φin

∂sc2
= qc2 [1 + x · Ratio] on the lower side (3.4)

where Φin is the inflow velocity potential. sc1 and sc2 are the arclengths of

the suction side extension and pressure side extension, respectively. qc1 and
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qc2 are velocities at the leading edges of suction side extension and pressure

side extension, respectively. x is the horizontal distance to the finite trailing

edge, as shown in Figure 3.10. Ratio is set as a user-defined parameter, to

determine the profile of pressure distributions on the extension surfaces.

x

y

0.9 0.95 1

-0.05

0

0.05

sc1

sc2

xqc1

qc2

cutting position

Figure 3.10: Definition of variables for cavity-like extension

By integrating (3.3) and (3.4), the expressions for φ on the extension

are obtained.

φ(sc1) = −Φin(sc1) + Φ1(0) + qc1

∫ sc1

0

[1 + x · Ratio] dS (3.5)
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φ(sc2) = −Φin(sc2) + Φ2(0) + qc2

∫ sc2

0

[1 + x · Ratio] dS (3.6)

where Φ1(0) and Φ2(0) are the total potentials at the leading edges of suction

side extension and pressure side extension, respectively.

The extension surface, and thus sc, is not known and will be deter-

mined iteratively in the present method. As a first iteration, the extension

panels are placed on an arbitrary extension behind the finite trailing edge. At

each successive iteration the extension panels are relocated on the updated

extension surfaces, which are computed at the end of the previous iteration.

The “cavity” height (taken normal to the present iteration “cavity” surface)

is hc and it represents the amount by which the updated extension surface has

to be corrected. At the end of the extension, the cavity closure condition is

satisfied so that the cavity height vanishes at the end.

hc1(sc1L
) = 0 on the upper side (3.7)

hc2(sc2L
) = 0 on the lower side (3.8)

where hc1 and hc2 are the cavity heights on the suction side extension and

pressure side extension, respectively. sc1L
and sc2L

are the total arclengths of

the suction side extension and pressure side extension, respectively.

It can be shown that the following relationship is valid up to the first

order in hc1 and hc2. [Kinnas and Fine 1991]

qc1(1 + x · Ratio)
dhc1

dsc1
=

∂φ

∂n
+

∂Φin

∂n
on the upper side (3.9)
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qc2(1 + x · Ratio)
dhc2

dsc2
=

∂φ

∂n
+

∂Φin

∂n
on the lower side (3.10)

Combining Equation (3.7),(3.8),(3.9) and (3.10), we arrive at the cavity closure

condition:

∫ sc1L

0

∂φ

∂n

dsc1

1 + x · Ratio
= −

∫ sc1L

0

∂Φin

∂n

dsc1

1 + x · Ratio
on the upper side

(3.11)
∫ sc2L

0

∂φ

∂n

dsc2

1 + x · Ratio
= −

∫ sc2L

0

∂Φin

∂n

dsc2

1 + x · Ratio
on the lower side

(3.12)

Equations (3.1),(3.2),(3.5),(3.6),(3.11) and (3.12) can be solved simul-

taneously for all the unknowns. Suppose we have N panels on the hydrofoil

(including the extension), the unknowns to be determined are from N + 2

equations. (N equations from Green’s formula and 2 cavity closure condi-

tions). Therefore, qc1 and qc2 are determined in the solution, as well as φ

and ∂φ
∂n

on the foil and extension surface. The updated extension surface is

obtained using Equations (3.9) and (3.10), and the kinematic boundary con-

dition on the extension is only satisfied when the solution of the extension

surfaces is obtained. Finally, the pressure distribution is determined on the

updated surface, as shown in Figure 3.11.

Due to the unsymmetrical geometry of a general foil, the initial arbi-

trary extension will give some difference between qc1 and qc2. To make qc1

equal to qc2 (so that the two pressures are equal to each other), an outer itera-

tion process is needed (with respect to the inner iteration process to determine

the extension surfaces). The last camber point of the extension is again set as
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Figure 3.11: Updated extension surface

the control point, and Newton-Secant method is used to update the vertical

position of this point. This outer loop ends until a solution is obtained for

which qc1 = qc2.

A flowchart of the whole process is shown in the Figure 3.12.
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Start with initial solution  

for last camber point 

Apply the scheme to find the updated  

extension surface and qc1, qc2 
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end 
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Apply Newton-Secant  

Method to update the  

position of last point 

Figure 3.12: Flowchart for cavity-like scheme
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3.2.3.2 Results from Cavity-like Scheme

The viscous pressure distribution on the hydrofoil for Ratio = −0.3 is

shown in Figure 3.13, from which we can see that the pressure difference at

each location on the two sides of the extension vanishes.

The influence of different values of Ratio on inviscid and viscous pres-

sure distributions is studied and shown in Figures 3.14 and 3.15. Note that

Ratio ≤ 0 because pressure increases (velocity drops) along the separation

zone. Figure 3.14 shows that for different values of Ratio, different pressure

distributions are developed on the extension surfaces, but the pressure differ-

ences on the two sides of the extension are equal to zero. The sudden change of

pressure at the end of the extension is due to the inviscid cavity closure. Figure

3.15 shows that the viscous effect influences the pressure distribution so that

the pressures of the two sides do not equal to each other for all locations of the

extension. For Ratio = −0.3, however, the influence happens to be very small.

[Kinnas et al. 1994] provides a scheme to correct the viscous pressure (make

it constant on the cavity surface), but it is found that the correction scheme

does not have a significant impact on the pressure distribution. Therefore it is

not applied here. (This scheme is discussed in Chapter 5.) Furthermore, both

figures show that the value of Ratio affects the pressure distribution near the

trailing edge, but the influence is not significant.
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Figure 3.13: Viscous Cp distribution on the hydrofoil (Ratio = −0.3): (a)
global result, (b) near the trailing edge
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Figure 3.14: Influence of different values of Ratio on inviscid pressure distri-
bution, using the cavity-like scheme
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Figure 3.15: Influence of different values of Ratio on viscous pressure distri-
bution, using the cavity-like scheme
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3.2.4 Correlation of all current methods with Fluent analysis

The comparison of pressure distribution predicted by the current meth-

ods and Fluent is shown in Figure 3.16, from which one can see that all pre-

sented schemes predict the pressure distribution with acceptable accuracy.

Also, the two degrees of freedom iteration method and cavity-like scheme both

give more accurate results, compared with the one degree of freedom iteration

method, assuming that the Fluent result is the “correct” one. The comparison

x
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p
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cavity-like scheme ratio=-0.3
Fluent
two-degree freedom iteration method
one-degree freedom (non-lifting)

Figure 3.16: Comparison of pressure distributions predicted by proposed meth-
ods and Fluent
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of lifting forces evaluated by current schemes and Fluent is shown in Table 3.2.

Note that for the BEM solution, lift is evaluated only over the foil, not includ-

ing the separation zone. For this case, Both two degrees of freedom iteration

method and cavity-like scheme give the good correlations with Fluent.

Table 3.2: Comparison of lifting force predicted by proposed methods and
Fluent

Method CL

Fluent 0.6717
arbitrary extension 0.7758

one degree of freedom 0.7124
two degrees of freedom 0.6744

cavity-like scheme 0.6915

The comparison of computational cost is shown in Table 3.3, from which

we can see that the computational cost is reduced tremendously by applying

the presented schemes.

Table 3.3: Comparison of computational cost

Analysis Method Fluent All presented
schemes

10 cores of
Computer dual-core CPUs 1 core of

Characteristics (1.6GHZ a dual-core CPU
AMD Opteron,

Running Time about 4 hours Less than 1 minute
for steady run
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3.2.5 Some other results for different angles of attacks

Some other results are shown for the same hydrofoil at other angles

of attack, for the test of the scheme. Figure 3.17 and Figure 3.18 shows the

correlations of pressure distributions between current methods and Fluent at

seven and four degrees angle of attack, respectively. The comparison shows

that the two degrees of freedom iteration method and cavity-like scheme both

give reasonable results.

The presented scheme provides a way to predict the performance of

hydrofoil with non-zero trailing edge thickness, for which the detachment po-

sition of the separation zone is known as a priori. However, for a hydrofoil

with rounded trailing edge, some iterative procedure is needed to find the flow

detachment position. The shape factor H (H = δ∗/θ, where δ∗ is the dis-

placement thickness and θ is the momentum thickness) might serve as a useful

parameter to find the separation position. This work is discussed in Chapter

6 as future work.
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Figure 3.17: Comparison of pressure distributions predicted by proposed meth-
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Chapter 4

Methodology and Results in 3D

4.1 Propeller Geometry

The propeller used in this study is a five-blade propeller with P0.7/D =

0.9288, where P0.7 is the propeller pitch at 70% of the propeller radius, and

D is the propeller diameter. A global view of the propeller is shown in Figure

4.1, and some section geometries of the propeller are plotted in Figure 4.2

(Only trailing edge parts are shown.). More details of the propeller geometry

are restricted from including in the thesis, by the provider of the experimental

data. The feature of this propeller, significant non-zero trailing edge thickness,

is evident in both figures. The t0/c of this propeller varies from 0.6% to 5%

, where t0 and c are the trailing edge thickness and chord length of each

strip of the propeller, respectively. For convenience, we will call this propeller

”propeller A” hereafter.

In the past, this kind of propeller is treated using two different types of

approximations. As shown in Figure 4.3, approximation 1 closes the trailing

edge of each strip at its mid-point. In current application, the foil geometries

are modified near the trailing edges over 20% of the chord lengths. Approx-

imation 2 uses an extension with zero camber at the last point behind each

43



finite trailing edge. In current application, extensions of 10% of the chord

lengths (including extensions) are used.

Y
X

Z

non-zero trailing edge

Figure 4.1: The propeller A, with significant non-zero trailing edge thickness

44



x/R

y/
R

non zero trailing edge

Figure 4.2: Expanded view of some sections of propeller A
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Figure 4.3: Two approximations used in the past

46



One way of generating approximation 1 is by using a parabolic distri-

bution of DS between the original geometry and modified geometry, as shown

in Figure 4.4. Specifically,

DS = (Y Sori − Y Pori) × (12.5x̄2 − 20x̄ + 8) (4.1)

Y Pmod = Y Pori + DS (4.2)

Y Smod = Y Sori − DS (4.3)

So that when x̄ = 0.8, Y Pmod = Y Pori; Y Smod = Y Sori; (4.4)

∂DS

∂x̄
= 0 (4.5)

when x̄ = 1.0, Y Pmod = Y Smod = 0.5 × (Y Pori + Y Sori) (4.6)

Where x̄ = x/c.

Equation (4.5) must be satisfied so that the modified geometry does

not have a discontinuous point. Geometry discontinuity always causes pressure

discontinuity on the strip. On the other hand, different lengths of the geometry

can be modified by using different distributions of DS. In our research, 20%

∼ 40% are tried and it was found that they do not have a significant impact

on the forces and moments of the propeller.

47



x/R

y/
R

original foil
approximation1

DS

YS_ori

YS_mod

YP_ori
YP_mod

Figure 4.4: The way to close the non-zero trailing edge by using approximation
1
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Figure 4.5: Current approach: original propeller with extensions determined
by the last camber points

In the current approach, we extend each section by a flap, whose ge-

ometry is controlled by the location of the last camber point (or two camber

points in two degrees of freedom model), as shown in Figure 4.5. As in the

2D model, we determine the positions of the last camber points so that the

conditions used in 2D are satisfied at each strip of the propeller.

49



4.2 BEM-inviscid model

In this section, the BEM inviscid model is coupled with one or two de-

grees of freedom iteration method used in 2D. It turns out that this approach

is not able to give a good correlation with experimental data. However, it is

necessary to include these results in two senses: (1)Since the convergence of

XFOIL is very difficult for some certain geometries in 3D, applying inviscid

scheme could avoid this difficulty as a preliminary investigation. (2) Conver-

gence study is easier to perform using inviscid model, in which the error from

XFOIL is excluded.

4.2.1 One degree of freedom model in 3D

A sample case is provided here, for the explanation of this scheme.

Consider propeller A as discussed before, extension of 10% of the chord length

(including extension) is added behind each strip. The geometries of the ex-

tensions are determined in the same manner as in 2D - by the interpolation

of the original strips and the last camber points. For this case, the advance

ratio J = Vs

nD
= 0.85, where Vs is the ship speed, n is the propeller rotational

speed and D is the propeller diameter. 80 (chord-wise)*20 (span-wise) panels

are used, including the extension. Cosine spacing is used in chord-wise and

constant spacing is used in span-wise. Strips 1-20 are used for strips from the

hub to the tip.

The pressure equivalence condition in 3D is similar as that in 2D. It

requires that the 3D pressure distribution closes at the actual trailing edge of
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each strip. The non-lift condition needs to be performed with more care, in

term of the definition of lift. In 3D, each strip sees a different inflow velocities

due to the different rotational linear speeds, even if the inflow wake is constant.

Therefore, each strip has its own local angle of attack, which is related to

the local pitch angle, rotational linear speed and inflow wake. The non-lift

condition in 3D can be expressed as: For each strip, lift force with respect

to the local angle of attack vanishes on the extension. Also, it is worthwhile

to mention that the velocity has three components in 3D. The total velocity,

including all three components, is considered in evaluation of pressure using

Bernoulli’s equation.

The convergence criterion is set as ∆Cp < 10−2 (Cp = (p−p0)/(ρ
2
n2D2),

where p0 is the pressure at infinity.) for pressure equivalence condition and

CL < 10−3 (CL = Lift/(ρ
2
n2D2 · Aex), where Aex is the planform area of the

extension and Lift is evaluated by integrating the pressure over the extension

of each strip) for non-lift condition.

The scheme used to obtain the solution of one degree of freedom model

is summarized in section 4.2.3. Here the pressure distributions on different

strips are shown in advance in Figure 4.6, for the explanation of the scheme.
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Figure 4.6: Inviscid pressure distributions on some sections for one DOF model
in 3D at J = 0.85, span-wise positions of the strips: strip1: r/R=0.1888; strip5:
r/R=0.3552; strip10: r/R=0.5632; strip15: r/R=0.7712; strip19: r/R=0.9376

As shown in the Figure 4.6, the non-lift condition or pressure equiva-

lence condition is satisfied on all strips for the two schemes, respectively. For

strips near the hub, the correction obtained by applying current schemes is

significant, compared with the results from arbitrary extensions. This is rea-

sonable because the trailing edge thickness of the strips near the hub are much

larger than those near the tip, as shown in Figure 4.2.
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4.2.2 Two degrees of freedom model in 3D

Another sample case in provided here again, for the sake of explanation.

As one DOF model, extension of 10% of the chord length is added behind each

strip of propeller A. Instead of controlling the geometry of extension by the

last camber point, the mid-point and last point are both chosen as the control

points for each strip. For this case, J = Vs

nD
= 0.9 and 80*14 panels are used

to discretize the propeller surface. Fewer panels are used in the span-wise

direction to have the convergence faster.

The convergence criterion is set the same as the one DOF inviscid

model. At the end of the iteration, both conditions should be satisfied for

each strip of the propeller, as shown in Figure 4.7.

The pressure distributions from the two degrees of freedom model do

not have too many differences with those obtained by one degree of freedom

model, except a small part near the trailing edge. It is found that the forces

and moments predicted by these two models are not very different in 3D ap-

plication.
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Figure 4.7: Inviscid pressure distributions on some sections for two DOF model
in 3D at J = 0.9, span-wise positions of the strips: strip1: r/R=0.1977; strip5:
r/R=0.4354; strip9: r/R=0.6731; strip13: r/R=0.9109
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4.2.3 Solution scheme

In this section, one DOF model with pressure equivalence condition is

taken as an example for explaining the scheme to obtain a converged solution.

In this case, J=0.9 and 80*20 panels are used.

The pressure difference at the actual trailing edge of each strip is a func-

tion of 20 last camber points. The problem can be described as determining

twenty unknowns (positions of twenty camber points y1, y2, ..., y20) by satisfy-

ing twenty conditions (pressure differences at the original trailing edges vanish;

∆p1, ∆p2, ..., ∆p20 = 0). Mathematically, we need to solve 20 equations:

∆pn(y1, y2, ..., y20) = 0, n = 1, 2, ..., 20

A natural idea to solve this problem is to use a 20-equation Newton-

Raphson method. However, a fatal drawback, as shown below, makes this

scheme difficult.

Accurate numerical derivatives, which are needed in Newton-Raphson

method, are hard to obtain. On the other hand, the N-equation Newton-

Raphson method needs accurate numerical derivatives and good initial solu-

tions to get converged. The figure 4.8 shows the numerical derivatives ∂∆pn

∂y10

by using different sizes of ∆y10.

As shown in Figure 4.8, when ∆y10 is very small (∆y10 = 0.000001),

the error of PROPCAV (mostly due to its single precision) ruins the result.

When ∆y10 becomes slightly larger (∆y10 = 0.00001 and ∆y10 = 0.0001),
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the global results are improved, but near the tips (and also hub) the results

still behaves oddly due to error of PROPCAV.

∆y10 = 0.01 and ∆y10 = 0.001 give globally reasonable results. How-

ever, for ∆y10 = 0.001 the tip is still a problem. Because theoretically,

the derivatives should tend to zero as the position goes far from strip 10.

Therefore, the size of ∆y10 to give reasonable derivatives are in the order

of O(0.001)-O(0.01). However, derivatives in this order are not accurate be-

cause ∆y10 is in the same order of final solution − initial solution. For

example, if we start with an initial solution of (0,0,0,0,...,0,0,0,0) for this

case, the final solution, obtained by another scheme which works, turns out

to be (0.0061676,0.0055281,0.0029191,-0.0019412,... ,-0.0035514,-0.0014955,-

0.0007270,0.0000458).

Two facts make the situation even worse. First, for different strips, the

sizes of ∆yn to obtain reasonable numerical derivatives are different. It is hard

to find a uniform ∆yn to apply on all strips. Second, for viscous calculations,

when the error of XFOIL steps in, things become even harder.

A scheme without using numerical derivatives is applied for current

case. The basic idea is from the figures of numerical derivatives shown above:

Moving the last camber point of strip n only influences ∆p near strip n. The

iteration process of this scheme is outlined as follows:

1. Solve the equation ∆p1(y1) = 0 using Newton-Secant method, with y2, y3, ..., y20

as constants.

2. Solve the equation ∆p2(y2) = 0 using Newton-Secant method, with y1, y3, ..., y20
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as constants.

. . . . . .

20. Solve the equation ∆p20(y20) = 0 using Newton-Secant method, with

y1, y2, ..., y19 as constants.

21. Check if all strips converge. If not, steps 1-20 are applied again. (Any of

steps 1-20 might be skipped if the equation is satisfied before the iteration of

Newton-Secant method)

Similar schemes can be applied on one DOF non-lift condition and two

DOF model. In two DOF model, steps 1-20 should be modified as: Solve the

equations ∆pn(camber point1 at strip n, camber point2 at strip n) = 0 and

CLn(camber point1 at strip n, camber point2 at strip n) = 0 using a 2-equation

Newton-Raphson method. Here, 2-equation Newton-Raphson method works

because accurate local numerical derivatives (like ∂∆p10

∂y10
) are easier to evaluate.

In the author’s experience, this scheme works as long as the initial

solution is not too bad. However, in some certain cases, trial-and-error is

needed for finding a good initial solution.

After a converged result is obtained, the forces and moments on the

blade with non-zero trailing edge thickness need to be evaluated. In the current

approach, they are evaluated as the sum of two parts, as shown in Figure 4.9:

part 1: forces and moments due to pressure and suction sides of the blade.

part 2: forces and moments due to non-zero trailing edge. For this part, the

pressure is taken as the average of the base pressures at the pressure side and

suction side.
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Figure 4.9: Two parts of forces and moments

A flow chart for the whole solution process is shown in Figure 4.10.
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Figure 4.10: A flowchart for the whole solution process
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4.2.4 Results and comparison

KT and KQ predicted by one degree of freedom model with both con-

ditions are shown in the Figure 4.11, with the experimental data and results

from the two approximations.

As shown in the Figure 4.11, the one degree of freedom inviscid model is

an improvement from using arbitrary extensions (approximation 2). However,

it gives no better results than approximation 1. Discrepancies with experimen-

tal data still exist, especially for KT . Also, the two degrees of freedom model

does not give better results than the one degree of freedom model. There

might be two reasons for this: (1) The number of panels used in two DOF

model is less than that in one DOF model in this application. Less number of

panels is used here only for a fast convergence. However, convergence study

shows that a difference of 14 and 20 panels in span-wise direction does not have

a significant impact on the results, as discussed in Section 4.4. (2) Viscous

effect is important in this kind of flow separation. Using inviscid model is not

supposed to predict the forces and moments well. All the models are devel-

oped as viscous models in 2D. The non-lift condition, which we get evidence

from Fluent result, only applies to viscous flow. As shown later in Section 4.3,

Applying XFOIL on one DOF model helps improve the results significantly.

One might argue that the one degree of freedom inviscid model is no

better than using a simple approximation 1. This is true in terms of inviscid

forces and moments. However, using approximation 1 has two disadvantages.

(1) Applying XFOIL on the generated geometry does not help to improve the
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results, as shown in Section 4.3. (2) The modification of the geometry results

in the change of pressure distributions significantly. Figure 4.12 shows the

pressure distributions on two arbitrary sections by applying approximation 1

and one DOF inviscid model. Even if the slope of the geometry and pressure

distribution are both kept continuous, the results are very different from those

obtained by one DOF inviscid model.
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Figure 4.11: Results from one DOF inviscid model: (a) KT , (b) KQ
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4.3 BEM-viscous model

In this section, XFOIL is coupled with the inviscid solution to obtain

the viscous results. Two models are used. First, a simple model is used, in

which XFOIL is applied on top of the geometry from inviscid solution. Second,

the one degree of freedom model, like the method used in 2D, is applied on

the viscous results in each iteration.

4.3.1 A simple model

XFOIL is applied on top of the inviscid solution obtained by the one

degree of freedom model (non-lift condition). The Reynolds number, based on

the propeller diameter and inflow velocity, is set at 637000, which is the same

as the experimental setting. The resulted KT and KQ are shown in Figure

4.13.

As shown in the figure, applying XFOIL on top of the one DOF invis-

cid solution helps to improve the KT curve. KQ curve is changed as well but

does not show better behavior than inviscid results. Also, as discussed before,

XFOIL does not help to improve the results from approximation 1. However,

a disadvantage of this simple model exists that XFOIL influences the pres-

sure distributions on the strips (original+extension). Therefore, the viscous

pressure does not satisfy the non-lift condition, as shown in Figure 4.14.
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4.3.2 VII BEM Solver coupling with one degree of freedom model
in 3D

In this model, XFOIL is applied on each iteration. In other words, one

DOF model is applied on the viscous pressure so that in the end the viscous

pressure distribution satisfies the non-lift condition. For example, the propeller

A is modeled using 80*14 panels. At J=0.85, the pressure distributions on

different strips are shown in the Figure 4.15.

The predicted KT and KQ from this model are shown in Figure 4.16.

At five different values of J , the current model is applied using 110*14 panels.

It can be seen that both KT and KQ are improved significantly at higher values

of J .

It seems that not much benefit is gained by applying this model at

lower values of J . However, there are many unknown factors that can have

impact on the viscous results, such as the turbulent intensity level, transition

point from laminar to turbulent flow, number of elements and so on. These

unknown factors provides some uncertainties and their influences on the re-

sults are discussed below.
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Influence of turbulence level:

In XFOIL, the transition points from laminar to turbulent flow can be

set as either forced or free transitions. Since no turbulent stimulator is used in

this experiment, we used free transitions in all simulations. In the case of free

transition, the position is controlled by the critical maximum amplification

rate of the Tollmien Schlichting waves (Ncritical). For example, Ncritical of

MIT’s water tunnel is 2.623 which corresponds to a one percent turbulence

level. [Rice 1991]

It is found that different turbulence levels influence the pressure distri-

butions near the transition point, resulting in different forces and moments.

Figure 4.17 shows the pressure distribution on an arbitrary strip of propeller A

(110*14 panels, J = 0.75) by using different Ncritical values. It can be seen that

different transition positions are obtained from different values of Ncritical. The

predicted KT and KQ from these cases are listed in Table 4.1, which shows that

KT changes with different values of turbulence levels. Note that for this case,

the experimental data for KT and 10KQ are 0.1161 and 0.2081, respectively.

Table 4.1: KT and KQ by using different turbulent levels at J = 0.75

Ncritical 2.1 2.3 2.5 2.7 2.9 3.1 3.3
turbulent level 1.24% 1.14 % 1.05 % 0.97% 0.89% 0.82% 0.75%

KT 0.0952 0.0962 0.0974 0.0981 0.0990 0.0998 0.1004
10KQ 0.1899 0.1899 0.1901 0.1900 0.1900 0.1902 0.1901
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Influence of number of elements:

Although the inviscid results converge well with number of elements

(discussed in Section 4.4), the viscous results are found to vary with number

of elements, which is an internal deficiency of the viscous part of PROPCAV.

Figure 4.18 shows the viscous pressure distribution on one arbitrary strip of

propeller A (J = 0.75) by using different numbers of chord-wise elements. Dif-

ferent numbers of elements result in different transition points, which appears

not to converge with increasing number of elements.

Table 4.2 shows the predicted KT and KQ by using different numbers of

chord-wise elements. It can be seen that the number of elements has a larger

impact on KQ. Also, the results do not appear to converge with increasing

number of elements.

With these uncertainties in XFOIL, it is hard to set the transition point

from laminar to turbulent flow the same as that in the experiment. With

different settings, the VII BEM Solver coupling with non-lift condition could

give different results. For example, at J = 0.75, using less chord-wise elements

and higher value of Ncritical helps to give results closer to the experiment data.

Table 4.2: KT and KQ by using different numbers of chord-wise elements at
J = 0.75

number of panels 50*14 80*14 110*14 140*14 170*14 200*14
KT 0.0995 0.0988 0.0980 0.0974 0.0962 0.0956

10KQ 0.2037 0.1938 0.1902 0.1879 0.1857 0.1834
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In current applications, 110*14 panels are used for all five different

values of J . The value of Ncritical is set at 2.623, which corresponds to the

turbulence level in MIT’s water tunnel, given that the turbulence level of this

experiment was not known.

As a summary, the predicted KT and KQ from all discussed approaches

are shown in Figure 4.19. And Table 4.3 gives the computational cost for all

these methods. Note that all the cases listed in Table 4.3 are run on a single

core of a quad-core CPU (2.5GHZ Intel Xeon) with 16GB RAM and 80*14

panels are used.

Table 4.3: Computational cost for approaches in 3D

closed closed open section open section
Cases section section (one DOF (one DOF

(inviscid) (viscous) inviscid) viscous)
about 1 hour, about 2.5 hours,

CPU time 0.56 min 0.61 min depending on the depending on the
initial solution initial solution
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4.4 Convergence study

In this section, extensive convergence studies are performed in terms of

pressure distributions, forces and moments. The inviscid solution is used to

avoid the influence of XFOIL on the results.

4.4.1 Convergence contour for propeller A with modified blade sec-
tions

A convergence study of KT and KQ for the same propeller but with

closed sections of NACA a=0.8 camber and NACA00 thickness distribution

is performed. This study shows an approximation of the convergence rate for

propeller A. The reason for using a closed section, instead of the real section,

is to reduce the computational cost. On the other hand, this study excludes

the influence of current (one DOF inv model) method. Therefore, it serves

as a comparison of the convergence of KT and KQ by using current method,

which will be discussed later.

For this case, J = 0.9, the results obtained by using 320*29 panels

are regarded as the accurate results. The contour lines for absolute error and

percentage error of KT and KQ with number of span-wise (MR) and chord-

wise (NC) elements are shown in Figure 4.20 and Figure 4.21. The absolute

error, as shown in the figure, does not change much with number of elements.

However, the percentage error of KT seems large in this case, which is due

to the fact that the “accurate” value of KT is near zero. This fact will be

discussed later.
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Figure 4.20: Error of KT by using NACA00 sections at J = 0.9, modified
Propeller A: (a) absolute error, (b) percentage error
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Figure 4.21: Error of KQ by using NACA00 sections at J = 0.9, modified
Propeller A: (a) absolute error, (b) percentage error
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4.4.2 Convergence study of propeller A

In this section, the convergence study is performed directly using pro-

peller A. For this case, J = 0.9 and 80*20 panels are used. The one DOF inv

model with pressure equivalence condition is applied. Other models can be

applied using the similar approach.

4.4.2.1 Convergence study of propeller A with number of chord-
wise elements

Four convergence studies of propeller A with number of chord-wise

elements are performed, as discussed below.

First of all, evaluating base pressures is a most important issue in cur-

rent approach. It is worthwhile to study the convergence of base pressures

with number of panels.

Figure 4.22 shows the convergence of base pressures with number of

chord-wise elements. The base pressure curve, as shown in the figure, gets

converged with increase of number of chord-wise elements. For this case, in-

creasing the number of chord-wise elements reduces the base pressure, but the

effect is not significant.

Second, the convergence of pressure distributions with number of chord-

wise elements is studied. The pressure distributions on three arbitrary strips

with different numbers of chord-wise elements are shown in Figure 4.23. Since

the torque and thrust of the propeller are obtained by integrating the pressure

and viscous forces, of which the first part is more important, the convergence

85



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

r/R

C
p 

(B
as

e 
pr

es
su

re
)

80*20
100*20
120*20
140*20
160*20

Figure 4.22: Convergence of base pressures with number of chord-wise elements
at J = 0.9, Propeller A

of pressure distributions is a good sign on whether the forces and moments

converge well.

As shown in the Figure 4.23, the pressure distributions converge well

with increase of number of chord-wise elements. Even though the pressure

distributions on the extensions vary with different numbers of elements, the

pressures on the actual foil remains the same. (Note that only the pressure

distributions from x=0 to x=0.9 are important, not including the extensions.)

Third, Table 4.4 shows the convergence of KT and KQ with number

of chord-wise elements. We can observe that KT and KQ get converged with

increase of number of chord-wise elements. However, the differences of KT

among these cases seem large. These “large” differences, which are related to
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the fact that the actual value of KT is near zero at J = 0.9, can be justified

as something we expect. The reasons are listed as below.

(1) These differences in KT are consistent with the convergence con-

tour for standard NACA00 sections. For instance, Figure 4.20 shows that

∆KT ≈ 0.118 between 80*20 and 160*20 panels, which is a little smaller but

comparable to the ∆KT shown in Table 4.4.

(2) These difference in KT are consistent with those by applying ap-

proximation 1 to the same propeller. Specifically, for using approximation 1,

a grid of 80*20 gives KT as 0.0100, while a grid of 160*20 gives KT as 0.0116.

The difference is similar as that for propeller A.

(3) In the above two cases (NACA00 and approximation 1), the one

DOF inviscid model is not included. The only source of the error is from the

difference in pressure distribution. In fact, although the differences of pressure

distributions are not visible in a global figure, it exists locally.

(4) Since the thrust is obtained from a summing operation (integration

of pressure and viscous forces), considering the absolute error makes more

sense. In other words, the percentage error varies greatly with J but the

absolute error does not. For example, Table 4.5 summarizes KT if we run the

case using approximation 1 at J = 0.75 and J = 0.9. The absolute error keeps

similar, with the percentage error much smaller at J = 0.75.
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Table 4.4: Convergence of KT and KQ with number of chord-wise elements at
J = 0.9

Number of panels 80*20 100*20 120*20 140*20 160*20
KT 0.00658 0.00743 0.00784 0.00811 0.00824

10KQ 0.08793 0.08947 0.09019 0.09118 0.09144

Table 4.5: Summary of KT using different panels at J = 0.75 and J = 0.9

Number of panels 80*20 100*20 120*20 140*20 160*20
KT at J = 0.75 0.09450 0.09507 0.09527 0.09542 0.09552
KT at J = 0.9 0.01000 0.01081 0.01118 0.01144 0.01157
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Figure 4.23: Convergence of pressure distributions on three arbitrary strips
with number of chord-wise elements at J = 0.9, propeller A
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Fourth, the convergence of two parts of KT with number of chord-wise

elements is studied, respectively. Figure 4.24 shows the convergence study of

KT due to pressure distributions on pressure and suction sides. Each point

on the curve shows the contribution to total KT due to the force of a strip at

a certain span-wise position. Figure 4.25 shows the convergence study of KT

due to base pressure, and the curve is generated using the same manner.

It is found that the first part of KT (due to pressure distributions on

pressure and suction sides) is the main source of total KT difference, which is

consistent with the discussion before. Also, the first part of KT is much larger

than the second part for most of the strips. However, the second part of KT

(due to base pressure) is important for strips where the first part is small. For

examples, Figure 4.26 shows the two parts of KT at the first few strips near

the hub, where the two parts of KT are comparable.

Note that in Figures (4.24), (4.25) and (4.26), only the pressure forces

on a single blade are included. Also, a different form of nondimensionalization

is used. The total KT can be obtained by

KT (total) = −(sum of points in Figure 4.24 and 4.25) × J2/8 (4.7)

× 5 (number of blades) + viscous forces + tip forces

Where the tip forces are obtained by extrapolation.
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Figure 4.24: Convergence study of KT due to pressure distributions on pressure
and suction sides at J = 0.9, Propeller A
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peller A
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4.4.2.2 Convergence study of propeller A with number of span-wise
elements

Figure 4.27 shows the base pressures by using different numbers of span-

wise elements for J = 0.9. The convergence is good globally except the few

strips near the tip. However, this is unavoidable because boundary element

method always has a hard time in predicting the tip effects of propellers.

Table 4.6 shows the convergence of KT and KQ with number of span-

wise elements. We can observe that the changes of KT and KQ with number

of span-wise elements are much smaller than those with chord-wise elements.

Also, instead of increasing or decreasing monotonically, KT and KQ fluctuates

with increase of number of span-wise elements. It is reasonable to believe

that these fluctuations of forces and moments come from the fluctuations of

pressure distributions on the few strips near the tip.

Table 4.6: Convergence of KT and KQ with number of span-wise elements at
J = 0.9

Number of panels 80*20 80*24 80*28
KT 0.00658 0.00675 0.00646

10KQ 0.08793 0.08902 0.08860
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4.4.2.3 Convergence study of different lengths of extensions

In all the above cases, extensions of 10% of the chord lengths are used.

It is worthwhile to see whether a different length of the extension results in

different pressures, forces and moments. In this study, 80*20 panels are used

and J = 0.75.

Figure 4.28 shows the pressure distributions on five arbitrary strips of

propeller A by using different lengths of extensions. It can be seen that the

pressure distributions do not change much on the actual propeller surface,

though they vary a lot from one another on the extensions. The resulted KT

and KQ by using different lengths of extensions are shown in Figure 4.29. As

we expect, the differences among these KT and KQ are small, given the small

differences in pressure distributions.

From the analysis above, the effect of extension lengths on the pressures,

forces and moments is found to be very small. This study is useful because it

allows us to use arbitrary lengths of extensions in a reasonable region, without

much change of the results.
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Chapter 5

VII BEM Solver with application to

partial-cavitating hydrofoils

This chapter is an independent part from the previous ones on non-

zero trailing edge thickness. It includes the application of the VII BEM Solver

to partial-cavitating hydrofoils. Also, a RANS solver coupled with a mixture

model (Fluent) is used to solve the same problem. The results from the two

approaches are compared.

5.1 Fluent simulation of partial cavitation

In this section, an introduction to the Fluent cavitation model is given,

and the results from this model is presented.

5.1.1 Description of Fluent cavitation model

This section gives a brief explanation of the Fluent cavitation model.

For more details, refer to [Singhal et al. 2002, Rhee et al. 2005, Fluent 2007].

The basic approach of the cavitation model consists of using the Navier-

Stokes equations for the mixture phase, a transport equation governing water

vapor mass fraction, as well as the extra turbulent model equations.
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Mixture equations

In most engineering application, the operating fluid is assumed to be

a mixture of liquid, vapor and a finite amount of non-condensable gases (e.g.

dissolved gases). The continuity equation governing the mixture is given by

∂

∂t
(ρm) + ∇ · (ρm~vm) = 0 (5.1)

Where ~vm is the mass-averaged velocity:

~vm =

3
∑

k=1

αkρk~vk

ρm
(k = 1, 2, 3 corresponding to water, vapor and gas)

ρm is the mixture density:

ρm =

3
∑

k=1

αkρk

And αk is the volume fraction of phase k.

Also, the momentum equations for the mixture can be obtained by

summing the individual momentum equations for all the phases:

∂

∂t
(ρm~vm) + ∇ · (ρm~vm~vm) = −∇p + ∇ · [µm(∇~vm + ∇~vT

m)] + ρm~g + ~F (5.2)

Where µm is the viscosity of the mixture:

µm =
3

∑

k=1

αkµk

For current application,

∇ · ∇~vT
m = 0 due to incompressibility
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ρmg = F = 0, no external force

Effect of non-condensable gases (NCG)

Even a small amount of NCG can have significant effects on cavitation.

[Watanabe and Prosperetti 1994] The primary effect is due to the expansion

of gas at low pressures which can lead to significant values of local gas volume

fraction, and thus have considerable impact on density, velocity and pressure

distributions. In the cavitation model, this effect is accounted by treating

NCG using ideal gas law. The secondary effect can be via increases in the

phase-change threshold pressure. This has been neglected due to lack of a

general correlation.

Effect of turbulence (taken from [Singhal et al. 2002])

Several experimental investigations have shown significant effect of tur-

bulence on cavitating flows [Keller and Rott 1997]. [Singhal et al. 1997] re-

ported a numerical model, using a probability density function (PDF) for

accounting the effects of turbulent pressure fluctuations. This approach re-

quired: (a) estimation of the local values of the turbulent pressure fluctuation

as:

P ′
turb = 0.39ρk

(b) Computations of time-averaged phase-change rates by integration of in-

stantaneous rates in conjunction with assumed PDF for pressure variation

with time. In the Fluent model, this treatment has been simplified by simply
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raising the phase-change threshold pressure value as:

Pv = Psat + P ′
turb/2

Where Psat is the saturation pressure (the pressure for a corresponding satura-

tion temperature at which a liquid boils into its vapor phase) without turbulent

effect.

Transport Equation for Vapor Mass Fraction

The vapor mass fraction, f , is governed by a transport equation:

∂

∂t
(ρmf) + ∇ · (ρm~vvf) = ∇ · (γ∇f) + Re − Rc (5.3)

Where ~vv is the velocity vector of the vapor phase, γ is the effective exchange

coefficient, corresponding to diffusion of vapor phase. Re and Rc are the

vapor generation and condensation rates. The expressions for both are derived

from the Rayleigh-Plesset equations. [Simonin and Viollet 1990] Using
√

k

(square root of turbulent kinetic energy) as a characteristic velocity and with

consideration of turbulent effects, they are given as:

when p < pv Re = Ce

√
k

σ
ρlρv

√

2(pv − p)

3ρl
(1 − fv − fg)

when p > pv Rc = Cc

√
k

σ
ρlρv

√

2(p − pv)

3ρl
fv

Where σ is the surface tension coefficient of the liquid, and Ce and Cc are

empirical constants with Ce = 0.02 and Cc = 0.01.
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Finally, the relation between the mass fraction and the volume fraction

is given by

αi = fi
ρ

ρi
(5.4)

Turbulence modeling

It is worthwhile to point out that the equations shown above are the

mean equations without considering the fluctuations of the variables. (The

reason for not doing this is to give a clear picture of the cavitation model)

However, for turbulence modeling, Reynolds Averaging needs to be applied.

For this application, Reynolds Stress Model (RSM) is used, which solves five

extra equations for a 2D problem. Specifically, it models the evolutions of four

Reynolds Stress components and the turbulent dissipation rate. Due to the

symmetry condition in 2D (statistics is invariant with reflection of the axis

normal to the 2D plane), we can obtain that < uw >=< vw >= 0. Therefore,

the remaining Reynolds Stress components modeled are < uu >, < vv >,

< ww > and < uv >.

5.1.2 Fluent setting

Geometry and Grid

In present work, the hydrofoil used is a NACA00 section, with max-

imum thickness chord ratio t/c = 0.04 and maximum camber chord ratio

cam/c = 0.02. The computational domain is [-5,10] horizontally and [-5,5]

vertically, as shown in Figure 5.1 with the boundary conditions. GAMBIT

is used for building the grid. As shown in Figure 5.2, a structured-grid zone
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Figure 5.1: Computational domain and boundary conditions

is built near the hydrofoil and the thickness of the first layer is O(1 × 10−4),

which gives the value of wall y+ at O(20). An unstructured-grid zone is built

in the rest of the domain. The total number of cells is 101840.

Fluent running conditions

For spatial discretization, the schemes used are shown in the table 5.1.

It should be pointed out that the second order upwind scheme is not available

for vapor fraction. The PRESTO! (PREssure STaggerring Option) scheme

used for pressure discretization is a scheme similar in spirit to the staggered-

grid scheme. Also, SIMPLE is used for pressure-velocity coupling.
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Table 5.1: Spatial discretization in Fluent

Density, momentum, Reynolds stress, Second order upwind
turbulent dissipation rate

Vapor fraction First order upwind
Pressure PRESTO!

Table 5.2 gives some physical parameters used in this Fluent simulation.

These values corresponds to the temperature T = 300K. The operating (am-

bient) pressure is set as 50000 Pa, which corresponds to a cavitation number

σ = p∞−pv

(1/2)ρv2 = 0.955. (inflow velocity=10m/s, angle of attack=3 degrees)

Since the nature of cavitation restrains the steady state solution, (e.g.

the closure of the cavity fluctuates as predicted by the reentrant model.) Un-

steady solver is used to seek a quasi-steady solution. First order implicit

scheme is used for time discretization, which is supposed to be sufficient for
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Table 5.2: Physical parameter used in the Fluent simulation

Water vaporization pressure 2367.8 Pa
Surface tension coefficient 0.0717N/m

Non-condensable gas mass fraction 1.5 × 10−5

most problems [Fluent 2007]. At each time step, the residuals for all the un-

knowns (pressure, velocities, Reynolds Stresses, turbulent dissipation rate) are

set to be 10−6.

Finally, fourteen cores of quad-core CPUs (2.5GHZ Intel Xeon) are

used for this run. It takes about 20 hours for 30000 time steps. (dt=0.0005,

to ensure good convergence at each time step)

5.1.3 Results

In the unsteady calculation, the lift coefficient Cl = lift
(1/2)ρv2 ·1

is set as a

monitor, whose time variance behavior shows whether the calculation reaches

the quasi-steady state. Figure 5.3 shows the variance of Cl in 30s. We can

observe that after 10s, Cl becomes nearly a constant, with only a small amount

of fluctuation which is shown in Figure 5.3(b). We call this state quasi-steady

state because it is not steady in nature due to the fluctuation of cavity closure.

The small fluctuation of Cl is a good indicator of this behavior. However, the

amount of the fluctuation predicted by the mixture model is much smaller than

that from the experiments [Tulin and Hsu 1980]. Hereafter, all the results are

corresponding to this quasi-steady state.
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The y+ of the first grid point near the foil is shown in Figure 5.4. They

are in the order of O(20) and a standard wall function is used for the near wall

treatment.

The pressure distribution near the foil is shown in Figure 5.5. In (a) the

blue region (low pressure area) indicates the location where cavitation occurs.

The cavity length is about 0.27. Note that the water vaporization pressure

2367.8 Pa is only reached very locally at the foil leading edge. An explanation is

that the vaporization pressure happens locally when the cavitation is triggered.

Then the cavity bubble grows to form the whole cavity region. After the cavity

region is fully developed, the pressure inside the cavity region changes slowly in

space, (it does not remain a constant in this mixture model because turbulent

effects raise the phase-change threshold pressure value) which is shown more

clearly in (b). However, at the right end of the cavity bubble, the pressure
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gradient increases abruptly. These local high pressure gradients are consistent

with the fluctuation of the cavity closure.

More results about the pressure distribution on the foil, the volume

fraction distribution are discussed in Section 5.2, with the comparison with

results from BEM solver.
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5.2 VII BEM simulation

In this section, the application of VII BEM solver to partial-cavitating

hydrofoil is discussed. The inviscid solution from BEM solver has long been

developed and tested. [Kinnas and Fine 1993] Therefore, the emphasis of this

section is put on the viscous correction of the pressure distribution.

5.2.1 Inviscid solution

The formulation of BEM inviscid solution of a partial-cavitation prob-

lem can be found in [Kinnas and Fine 1993] and is not repeated here. The

basic idea is to treat the cavity surface to be a streamline on which the pressure

is equal to the vaporization pressure. The code PCPAN is developed for this

application, in which the cavity position is known as a priori, the cavitition

number, potentials and cavity surface are solved. Once the cavity surface is

determined, it is used as part of the compound foil and the inviscid solution

is determined on this compound foil.

For a proper comparison with Fluent result, the same cavity position as

Fluent needs to be applied in the BEM solver. In this case, a cavity length of

0.27 which starts at the leading edge of the foil is given in PCPAN. Figure 5.6

shows the cavity surface predicted by the BEM solver. Also shown in Figure

5.6 is the water volume fraction near the cavity bubble obtained from Fluent.

The comparison shows that the cavity surface predicted by BEM solver agrees

roughly with the volume fraction contour lines on which αwater = 0.5 ∼ 0.55.

Figure 5.7 shows the pressure distributions predicted from BEM (in-
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viscid) and Fluent. As shown in the figure, the cavitating pressure predicted

by the BEM solver is very close to that given in Fluent (σ = 0.955). The only

large discrepancy happens near the cavity closure, which is as expected. The

BEM theory applies a cavity termination model that the velocity (i.e.pressure)

in the transition zone (a small distance near the cavity closure) departs from

its constant value according to a prescribed law. [Lemonnier and Rowe 1988]

While Fluent does not need a cavity termination model since RANS mixture

model is applied. It is impossible for these two methods to be consistent at

the cavity closure.
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5.2.2 Viscous solution

In this section, the viscous solution through coupling XFOIL with BEM

is discussed. XFOIL is applied on the compound foil (original foil plus cavity

surface) directly, which creates a problem that the viscous cavitating pressure

fails to be a constant. Three correction schemes are developed to eliminate

the negative effects of XFOIL.

5.2.2.1 Original viscous solution

XFOIL is applied on the compound foil directly and the pressure dis-

tribution is shown in Figure 5.8. We can observe that viscosity has two effects

on the cavitating pressure. First, the cavitation pressure increases by a finite

value; second, it somehow perturbs the constant cavitation pressure. These

two effects are due to the reason that the cavity surface is treated as a non-slip

wall, which is non-physical and different with Fluent mixture model. Three

schemes are developed for “correcting” the viscous pressure distribution, which

are discussed below.
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Figure 5.8: Viscous solution by applying XFOIL on top of the compound foil
directly, the result of BEM/XFOIL-original is obtained by running CAV2DBL
(viscous) on the compound foil obtained from PCPAN
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5.2.2.2 Correction scheme I

The correction scheme I is developed for eliminating the effect of pres-

sure perturbation” introduced by XFOIL. This scheme was first developed in

[Kinnas et al. 1994]. Its formulation is included here for the sake of complete-

ness.

The effect of viscosity on the inviscid flow can be accounted via the

blowing sources, σ̂, which are defined as:

σ̂ =
d(Ueδ

∗)

ds
(5.5)

Where Ue is the edge velocity and δ∗ is the displacement thickness. The

presence of the blowing sources will modify Green’s formula equation, when

applied on the foil surface, as follows:

φv

2
=

∫

S

[

G(−~U∞ · ~n)ds − φv ∂G

∂n

]

ds −
∫

W

∆φv
W

∂G

∂n
ds +

∫

S∪W

σ̂Gds (5.6)

When applying XFOIL on the compound foil, the introduction of blowing

source is the reason for changing the cavitation pressure. To eliminate the

perturbation effects on pressure, we need to find a “new” cavity shape on

which a “new” dynamic boundary condition is satisfied. Suppose φcor and

σcor are the “correct” perturbation potential and cavitation number, “NL”

stands for the compound foil predicted by BEM inviscid theory, the “new”

dynamic boundary condition on the cavity is given as

∂φcor

∂s
+ ~U∞ · ~sNL = U∞

√
1 + σcor (5.7)
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On the wetted foil, considering the blowing source strength, a “new” kinematic

boundary condition is satisfied:

∂φcor

∂n
= −~U∞ · ~n + σ̂NL (5.8)

Equations (5.7) and (5.8) take the same form as a partial cavitation

problem for which the cavity length is known as a priori, by adding the blowing

source σ̂NL to −~U∞ · ~n. We thus treat the correction problem as a cavity

problem (applied on the compound foil) and determine φcor and σcor. The

new values of ∂φcor

∂n
on the cavity are also determined at each iteration. The

cavity shape then needs to be corrected by hcor, defined normal to the original

cavity shape. If ~ncor is the unit vector normal to the correct cavity shape, the

following kinematic boundary condition must be satisfied when the iteration

converges:

[∇φcor + ~U∞] · ~ncor = σ̂NL (5.9)

The normal vector, to the first order in hcor, can be given as:

~ncor = ~nNL − dhcor

ds
~sNL (5.10)

Combining equations (5.9) and (5.10) gives the following equation for

updating cavity surface after each iteration:

U∞

√
1 + σcor[1 − f(x)]

dhcor

ds
=

∂φcor

∂n
+ ~U∞ · ~nNL − σ̂NL (5.11)

Where f(x) is a function used for the cavity termination model, which is

nonzero only on the transition zone to give a prescribed pressure distribution.
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After the “correct” cavity shape is found, Equation (5.6) is applied on

the “new” compound foil, and the “correct” viscous pressure is obtained. How-

ever, a problem still exists that after the new compound foil is obtained, the

blowing sources will change correspondingly. Therefore, iterations are needed

until pressure distribution remains unchanged compared to the last iteration.

Figure 5.9 shows the pressure distributions from the first and second iterations.

The difference is so small that the procedure of iteration is neglected.

Also shown in Figure 5.9 is that the “perturbation” of viscous cavitating

pressure is eliminated. However, correction I still treats the cavity surface as

a non-slip wall, which makes the viscous cavitating pressure lower than that

in Fluent mixture model.

The procedure for applying this scheme is outlined as follows:

(1) PCPAN: Find the inviscid cavity surface on the foil.

(2) CAV2DBL: Apply viscous solver on the compound foil and calculate the

strengths of blowing sources.

(3) PCPAN: Find the “new” cavity surface, as described above.

(4) CAV2DBL: Solve equation (5.6) to get the viscous pressure on the foil, by

adding the blowing source term.
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Figure 5.9: Viscous pressure distribution by applying correction I (Results
from first and second iterations are shown)
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Figure 5.10: Mixture velocity near the cavity predicted by Fluent mixture
model

5.2.2.3 Correction scheme II

The only difference between scheme I and scheme II is that in scheme

II, the strengths of blowing sources on the cavity surface are set to be zero,

after XFOIL is applied on the compound foil. The reason for doing this is

that the cavity surface is assumed to be inviscid. In Fluent mixture model,

the velocity near the cavity surface is high due to the locally low pressure, as

shown in Figure 5.10.
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Figure 5.11: A hydrofoil with sheet cavitation (The picture is taken in Uni-
versity of Tokyo and can be found online at http://www.fluidlab.naoe.t.u-
tokyo.ac.jp/Research/CavPictures/index.html.en)

Physically, there is an interfacial boundary layer existing at the cavity

surface, which is out of the modeling scope of BEM. However, experimental

result shows that the water vapor convected with the flow velocity. Figure 5.11

shows a picture of a hydrofoil with sheet cavitation in experiment. Instead of

using a viscous wall, it is more reasonable to model the cavity surface as

inviscid in BEM because the velocity near the cavity surface is physically

nonzero.
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Figure 5.12 shows the viscous pressure distribution obtained from Cor-

rection scheme II, where the cavitating pressure raises to the inviscid value.

However, since the strengths of the blowing sources on the cavity are forced

to be zero after XFOIL is applied on the whole compound foil, this scheme

creates a problem that the boundary layer thickness jumps from zero to a fi-

nite value at the end of the cavity. (The strength of the blowing source starts

from zero to a large value.) This negative effect is compensated by artificially

putting an extra source on the last panel of cavity, whose strength is opposite

to the one next to it.

This scheme is not a good scheme in the sense that too many things are

forced artificially. Although the cavitating pressure is raised to the inviscid

value for this case, it is not true for a case with different cavity length.

5.2.2.4 Correction scheme III

In this scheme, the viscous boundary layer is assumed to start at the

trailing edge of the cavity on the suction side, as shown in Figure 5.13. There-

fore, the cavity surface is treated as inviscid and the cavitating pressure is not

updated by XFOIL. The procedures to find the “new” cavity surface, which

are used in correction I and II, are not needed here.

Figure 5.14 shows the pressure distribution obtained from this scheme.

We can see that only the pressures on the wetted foil (not including the cavity

surface) are corrected.
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Figure 5.12: Viscous pressure distribution by applying correction II
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Figure 5.13: Treatment of boundary layer in Correction scheme III
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Figure 5.14: Viscous pressure distribution by applying correction III
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5.2.3 Summary of all schemes

As a summary, Figure 5.15 shows the comparison of all BEM schemes

and Fluent result. In term of cavitating pressure, the BEM inviscid scheme,

viscous correction scheme II, III and Fluent mixture model give very similar

results. The only large discrepancy exists at the cavity closure, which is due

to the fact that different treatments of cavity closure are applied.

These schemes are then applied to the same hydrofoil with smaller

cavitation number. Specifically, the operating (ambient) pressure in Fluent

is set to be 40000 Pa, which gives a cavitation number σ = p∞−pv

(1/2)ρv2 = 0.754.

Figure 5.16 shows the Fluent result of pressure distribution near the foil. The

cavity length for this case is about 0.74, which is, as expected, much larger

than the previous case. However, the similar behavior of pressure variance

can be observed inside and outside the cavity bubble. It should be noted that

the unsteady solver of Fluent is also used in this case, and it is found that

the cavity fluctuations are not significant. This is contrary to experimental

evidence where partial cavities exceeding 50% of the chord are very unstable

[Tulin and Hsu 1980]. Figure 5.17 shows the water volume fraction inside and

outside the cavity bubble and the cavity surface predicted by BEM solvers.

Similar as the previous case, the cavity surface predicted by BEM solver agrees

roughly with the volume fraction contour lines on which αwater = 0.55 ∼ 0.6.

The predicted pressure distributions on the foil by both Fluent and

BEM solvers are shown in Figure 5.18. Again, the cavitating pressure predicted

by BEM inviscid theory agrees well with Fluent result. However, relatively
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larger discrepancy still exists near the cavity closure region. Also, for this

case, correction scheme II fails to give a good correlation with Fluent in term

of the cavitating pressure.
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Figure 5.15: Summary of pressure distributions predicted by all schemes for
σ = 0.955

128



X

Y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

-0.2

0

0.2

0.4

0.6

0.8 absolute-pressure (pa)
89150
81500
73850
66200
58550
50900
43250
35600
27950
20300
12650
5000

5000

5000

6700

6700

67
00

8400

8400

10100

10100

10
10

0

11800

11800

13500

13500

15200

15200

16
90

0

16900

16900

18
60

0

18600

1860020
30

0

20300

20300

20
30

0

22
00

0

22000

22000

23
70

0

23
70

0

23700

23700

25
40

0

25400

25400

25400

27
10

0

27
10

0

27100 27100

27100

28800

28
80

0

28800

28800

30500

30
50

0

30500

30500

32200

3220033900

33900

35600

37300

39000
40700
42400

9200

49200

50900

50
90

0

52600

54300

57
70

0

61100

6280071
30

086600

X

Y

-1 -0.8 -0.6 -0.4 -0.2

0

0.2

0.4

0.6

Figure 5.16: Pressure distribution near the cavity bubble predicted by Fluent
mixture model for σ = 0.754: (a) global view of pressure distribution with
contour flood, (b) local view of pressure distribution inside and outside the
cavity bubble with contour lines, The units of both are Pascal.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

This thesis can be divided into two parts.

In the first part of the thesis, the viscous/inviscid interactive approach

and its application to hydrofoils and propellers with non-zero trailing edge

thickness are addressed. The investigation starts from a 2D hydrofoil. Two

kinds of iteration methods are coupled with the VII BEM solver to find a

non-lifting extension behind the finite trailing edge, which is used as an ap-

proximation of the flow separation zone. The flow around a hydrofoil with

non-zero trailing edge thickness is modeled in Fluent and by the current ap-

proach. The correlation of the results show that the current methods provide

acceptable results, with the computational cost reduced significantly. The two

degrees of freedom iteration method and the cavity-like scheme provide more

“accurate” results (relative to those from Fluent) than the one degree of free-

dom iteration method. The one and two degrees of freedom models are then

extended to 3D propeller flows. They are first coupled with the BEM inviscid

solution. The predicted KQ is close to the experimental data but the predicted

KT is lower. The results are no better than those from an approximation where
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the aft part of the thickness of the foil is altered so that it closes at the trailing

edge. Considering that viscous effects are important in flow separation, the

one degree of freedom model with non-lift condition is then coupled with the

VII BEM solver, and results closer to those measured are obtained.

In the second part of the thesis, the application of the inviscid/viscous

interactive approach to partial-cavitating hydrofoils are addressed. A RANS

solver (Fluent) coupled with a mixture model is first used to model the flow

around a hydrofoil with partial-cavitation at given cavitation numbers. The

hydrofoil with the same cavity extent is then modeled using BEM. The cavi-

tating pressure predicted by Fluent agrees well with the BEM inviscid theory.

However, coupling of BEM with XFOIL introduces viscous effects, which in-

crease and “perturb” the cavitation pressure. Three schemes are developed

to include the effects of viscosity in BEM and results comparable to those of

Fluent are obtained. Finally, the predicted pressure distributions by Fluent

and BEM have a relatively larger discrepancy near the cavity closure region,

especially for a long cavity length. This is due to the cavity termination model

used in BEM solver. It should be noted that the BEM/XFOIL with the effects

of the boundary layer fully included would produce a smaller cavity than that

predicted by Fluent. At this point we do not know which prediction is correct.

The main contributions of the research are:

• The present work provides a method to predict the viscous flow around

hydrofoils and propellers with non-zero trailing edge thickness. In recent
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years, there are an increasing number of propellers which are designed

to have a finite trailing edge, including some super-cavitating and fully

submerged propellers. Previously Two approaches were used to deal

with a finite trailing edge. The first one is to force the section to close

at the trailing edge, which is the approximation 1 in present work, and

is found to fail to give reasonable results. The second method assumes

an arbitrary separation zone on which the pressure is equal to the vapor

pressure, which is non-physical and not applied to fully wetted hydrofoils

and propellers. The present method gives better results than the previ-

ous approaches and can be used commonly for the treatment of non-zero

trailing edge thickness.

• The flow around a partial-cavitating hydrofoil is modeled using the VII

BEM solver and a RANS mixture model. A correlation study between

these two methods was performed.

6.2 Recommendations

One improvement and two applications of the current scheme are rec-

ommended for future work.

• Improvement of viscous results for a closed section: There are three defi-

ciencies for the viscous part of CAV2DBL and PROPCAV. (1) For some

cases, the results fail to converge by increasing the number of elements.

However, this feature does not exist in the original version of XFOIL.
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Fixing this problem could help improve the convergence behavior of the

VII BEM solver in 3D. (2) For some non-standard 2D sections, there

are some discrepancies between the results from CAV2DBL and XFOIL.

Looking into these discrepancies might help to improve the performances

of the viscous parts of CAV2DBL and PROPCAV. (3) In 3D application

(PROPCAV), the cross flow is neglected based on an assumption that it

is small enough. This assumption is not always true and it is worthwhile

to find a way to include the effect of cross flow.

• Backing condition: Treatment of backing condition involves two difficul-

ties. (1) The boundary layer theory fails at the sharp leading edge and it

is hard to find the stagnation point even for the inviscid theory. (2) Flow

separates at the rounded trailing edge and the position of detachment

position of the boundary layer is unknown. The problem at the leading

edge might be avoided by rounding the leading edge by a small arc, which

is consistent with the real case. Sharp leading edges are never applied

on propeller because they are easily damaged. For the problem at the

trailing edge, applying the current approach might help to overcome the

difficulty. A separation zone is needed behind the round trailing edge,

as shown in Figure 6.1. However, determining the starting position of

separation remains to be a problem. The shape factor H might help to

solve this problem. [Simpson 1989] suggests that for near-equilibrium

flows satisfying the Coles velocity profile model, intermittent transitory

detachment occurs at H = 2.70.
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extension

Figure 6.1: Separation zone for backing condition

• Super cavitation: Most super-cavitating propellers have finite trailing

edges. In a super-cavitating propeller, there are some strips near the

hub where only partial cavitation happens. The previous treatment is to

use an arbitrary separation zone on which the pressure is set to be vapor

pressure, which is non-physical. The current approach can be applied

to solve this problem and might help to improve the prediction of the

performances of such propellers.
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