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An iterative method, coupling a vortex lattice based potential flow solver

and finite volume based Euler solver, is used to model the interaction between com-

ponents of a multi-component marine propulsion system. The purpose of using the

above approach is to determine the effective wake (modified in the presence of the

other components) and evaluate the performance of each component subject to this

modified effective inflow velocity. The method has been applied to the stator-rotor

couple as well as to study the performance of podded propulsors.

The thesis work is extended to include the development of a two-dimensi-

onal unsteady Euler and laminar Navier-Stokes solver, based on the pressure correc-

tion scheme, to model the roll motions and separated flow past the bilge keels on a

vi



Floating, Production, Storage and Offloading (FPSO) vessel hull and accurately de-

termine the two-dimensional roll added mass and damping coefficients. This com-

putational tool can be coupled with an existing potential based hull motion solver

like WAMIT, to predict the motion of a hull subject to a three-dimensional wave

environment.
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Chapter 1

Introduction

1.1 Background

This thesis presents work done towards the computational modeling of FPSO hull

roll motions as well as modeling of flow around a two-component propulsion sys-

tem. These two topics, though seemingly disparate, are bound together by the fact

that the same equations govern the fluid behavior and therefore the same numerical

method can be extended to solve for both problems. The next section gives a general

introduction to the two problems.

1.1.1 Multi-Component and Podded Propulsors

Multi-component and podded propulsor systems are becoming increasingly popu-

lar options for modern day commercial marine vessels. Multi-component propul-

sors can offer higher efficiencies due to the cancellation of the flow swirl (rotation)

downstream of the propulsor. They can also reduce the overall amount of propeller

blade cavitation, as each component carries a fraction of the required thrust. Types

of multi-component propulsors include contra-rotating propellers, pre- or post-swirl

stator-rotor combinations, and these can be open, ducted, podded, integrated (with

the hull), or internal (such as the impeller system of a water-jet). Detailed results for

a stator-rotor and podded type of propulsion system are presented in Chapter 4.
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The last few years have seen a breakthrough in the application of podded

propulsors. The concept of an azimuthal, submerged, electrically driven pull pro-

peller provides various advantages in terms of efficiency, controllability, comfort and

vessel lay-out. With a continuous rotation angle of360o about the vertical axis, the

pod ensures optimum maneuverability for commercial vessels as well as for offshore

dynamic positioning. A podded propulsor such as the Siemens Schottel Propul-

sor (SSP) [Blenkey 1997] (shown in Figure 1.1) replaces the steering and propul-

sion systems of vessels; gives optimum maneuverability without additional stern

thrusters; lowers noise and vibration thanks to special supports; occupies less space

and requires a smaller engine room than a conventional system; can be installed later

in the construction stage than the conventional system, saving on construction time

and costs. Further advantages claimed for the SSP are: no risk of vibration exci-

tation by gear sets and cooling fans; simple surface-cooled motor; mounting of the

lower housing is possible without drydocking.

These new devices still have to prove their long term integrity and reliabil-

ity. More information is required on the design loads and design specifications for

podded propulsors in service as these devices significantly differ from conventional

propellers. Extensive CFD (Computational Fluid Dynamics) analysis and model

tank tests are required to develop a pod shape with enhanced efficiency and ma-

neuvering characteristics. CFD analysis would also help quantify the improvement

in propulsive efficiency offered by podded propulsors and, combined with design

tools, can be used to achieve optimum pod shapes. The present work presents the

analysis of flow past a simple podded propulsor geometry, for different propeller

configurations, in Chapter 4.
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Figure 1.1: Photograph showing details of the Siemens Schottel Propulsor (down-
loaded from the websitewww.is.siemens.de/presse/)

1.1.2 Prediction of Hull Motions

A floating body subject to a multi-component three-dimensional wave environment

has six degrees of motion. The three translational degrees parallel to the (x; y; z)

axes are calledsurge, heaveandswayand the three rotational degrees of freedom

about the same axes are calledroll, yawandpitch, respectively. Of these six motions,

the present work deals primarily with roll motion, with the relatively simpler heave

motion being used as an intermediate step to validate the method.

Roll motion of a vessel can be specified by certain primary parameters.

These include:

� Amplitude of motion (measured in degrees or radians)

� Period of motion (measured in seconds, typical periods range from 20-30 sec-
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onds)

� Rate of Decay (number of cycles to rest).

Floating, Production, Storage and Offloading (FPSO) vessels operating in

deep waters need to maintain their position in order to facilitate proper function-

ing and hence the modeling and control of roll motions assumes great importance

for such vessels. Field observations indicate that FPSO roll motions are larger than

expected based on their design and model tests. This can potentially lead to riser fa-

tigue and operational difficulties. The use of suitably located bilge keels (defined as

either of two projecting flanges extending along the bilge of a ship to reduce rolling)

is known to effectively mitigate the extent of these motions. According to [Kas-

ten 2002], for small craft, the long, low aspect ratio bilge keels offer roll reduction

of the order of 35% to 55% and their efficacy is independent of the vessel speed.

The bilge keels offer additional frictional resistance due to increased wetted surface

area. Certain other roll attenuation strategies include Passive Anti-Roll Tanks, Ac-

tive Fin Stabilizers, etc. However, for large vessels like FPSO’s the bilge keels offer

a relatively simple and inexpensive option.

One of the most challenging tasks in modern ship design is accurately pre-

dicting extreme loads and resulting hull responses while a ship is operating in severe

seas. The lack of adequate computational tools for the prediction of ship responses

in extreme seas arises primarily due to the complexity of the problem and our limited

knowledge of the actual governing physics. Therefore, modeling the complex flow

around the sharp-fin like bilge keels in the presence of the hull geometry and a free

surface is essential in order to accurately determine the effectiveness of the bilge

keels in roll motion mitigation. This thesis presents the development of a numerical
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model to determine the hydrodynamic coefficients for a two-dimensional body un-

dergoing heave and roll motions at the free surface of a fluid. Hull geometries with

and without bilge keels are modeled and the hydrodynamic coefficients for different

bilge-keel depths are compared. The developed tool could, in the long run, serve

as a design aid for designing bilge keels fitted to FPSO hulls. It would allow the

designer to experiment with various orientations and lengths of the keels, and thus

arrive at an optimum bilge keel depth and also allow visualization of the resulting

flow characteristics and motion decay.

1.2 Motivation

The inflow at the propeller plane, observed in the absence of the propeller is known

asnominal wake. This flow field contains strong vorticity generated by the boundary

layer along the ship hull upstream of the propeller.

Use of accurate and fast potential flow solvers to model the flow field around

a rotating propeller results in the vorticity in the flow-field being neglected. To

improve the accuracy in the prediction of the flow-field, the inflow to the propeller

is corrected to include the interaction between the propeller and the vorticity in the

inflow. This corrected inflow is known aseffective wake. Accurate knowledge of

the effective wake is essential in assessing the propeller design and performance,

especially for an unsteady phenomenon such as blade cavitation.

The presence of multiple-blade rows adds to the complexity of the problem.

Now the effective wake as “seen” by each component should include the influence

of the other component as well. Thus the solver needs to be able to model the

three-way interaction between the inflow and the two-components of the propulsion

system. This is achieved by coupling a Vortex Lattice Method based potential flow
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solver (VLM) [Kinnas et al. 1998] with an axisymmetric and three-dimensional Eu-

ler solver [Choi 2000]. An iterative process is performed between the two solvers,

with the VLM used to model each component individually and the Euler solver

used to determine the total flow field, in the presence of both components. The

above described iterative procedure can also be used analyze the flow around pod-

ded propulsor geometries. By studying the pressure distribution on the surface of

the pod and strut, an optimum design can be chosen so as to minimize pressure drag

and flow separation (see [Vartdal et al. 1999]) and this can lead to an improvement

in the propulsive efficiency of a podded propulsor.

Hydrodynamic solvers, based on potential flow theory, such as WAMIT

(Waves at MIT) are used to determine the added mass and damping coefficients

for a ship undergoing motions. Potential flow theory does not allow for lifting or

separation effects. In order to improve the accuracy in predicting the hydrodynamic

coefficients, an unsteady Euler solver, based on the pressure correction method, is

required to capture the vortices shed off the bilge keels.

The primary motivation in using Euler solvers is that they offer a sufficiently

accurate and computationally faster alternative to Reynolds Averaged Navier-Stokes

(RANS) solvers. The RANS solver has the advantage that the effect of viscosity is

included in the computation, but it requires a large number of cells concentrated

near the no-slip wall boundaries, for example the hull and the hub. The choice of

solver used depends on the nature of the problem being solved, for if viscous effects

are important for a problem, an Euler solver can not capture the flow-field accu-

rately. Viscous effects can be neglected when considering the global flow around

a propeller, unless one is interested in capturing the boundary layer flow close to

the blade and wall surfaces. Similarly, for strongly separated flows such as vortex-
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shedding seen off bilge keels, the pressure forces dominate over the viscous effects

[Yeung et al. 2000]. Therefore this work aims at using a 2D/3D steady/unsteady

Euler solver to determine accurately the flow, be it past the bilge keels on a ship hull

or past a multiple-blade row.

1.3 Objective

The objective of the work presented here is to develop a two-dimensional unsteady

Euler solver to solve the two-dimensional radiation problem due to the roll mo-

tion of a FPSO hull fitted with bilge keels. Visualization of the separated flow and

vortex-shedding past the bilge keels as well as prediction of the roll hydrodynamic

coefficients would be possible using the developed method.

This thesis also presents results for multi-component and podded propulsors,

with the flow-field solved using an earlier developed vortex lattice method based

potential flow solver [Kinnas et al. 1998] and axisymmetric/3-D steady Euler solver

[Choi 2000].

1.4 Overview

The contents of the remaining chapters are summarized below:

� Chapter 2 presents a literature review of previous work on prediction of hull

motions as well as flow past single- and multi-component and podded propul-

sors.

� Chapter 3 describes in detail the numerical formulation for a two-dimensi-

onal unsteady Euler solver, based on the finite volume method and pressure
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correction scheme. The formulation for a viscous solver and a steady three

dimensional solver is also provided, with only the primary differences from

the first method being highlighted. For completeness, a brief review of the

vortex lattice method based potential flow solver is also provided.

� Chapter 4 details the use of the coupled VLM and Euler solver approach as

applied to the stator-rotor couple as well as podded propulsors. The chapter

includes sections on grid generation, comparison with experiments as well as

numerical convergence tests.

� Chapter 5 includes the numerical validations performed in order to validate the

developed 2D unsteady Euler solver. Convergence studies and comparisons

with a commercial CFD code, FLUENT1 are also included in this chapter.

The results for a rectangular hull undergoing heave and roll motion, obtained

using the unsteady Euler solver, are presented next. Also included is the com-

parison with past work in roll motion modeling as well as a comparison be-

tween results from the viscous and Euler solver for the problem of oscillating

flow past a flat plate.

� Chapter 6 presents a summary and conclusions of this thesis. Recommenda-

tions for future work are also given.

1Developed byFluent Inc.
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Chapter 2

Literature Review

The first section of this chapter discusses work done in the past on the prediction of

propeller flow and propeller blade sheet cavitation using the vortex lattice method.

Section 2.2 provides a brief summary of past work done on effective wake prediction

for single and multi-component as well as podded propulsors. In Section 2.3, the

previous work done in the field of hull motion prediction is reviewed.

2.1 Vortex Lattice Method

A vortex lattice method was introduced for the analysis of fully wetted propeller

flows by [Kerwin and Lee 1978]. The method was later extended to treat unsteady

sheet cavitating flows by [Lee 1979] and [Breslin et al. 1982]. Vortex and source

lattices are placed on the mean camber surface of the blade, and a robust arrangement

of singularities and control point spacings was employed to produce accurate results

[Kinnas and Fine 1989]. In [Kinnas 1991], a leading edge correction was introduced

to account for the defect of linear cavity solution near a round leading edge, and was

incorporated into a code named PUF-3A. The method was then extended to treat

super-cavitating propellers subjected to steady flow by [Kudo and Kinnas 1995].

Most recently, the method has been re-named MPUF-3A for its added ability to

search for mid-chord cavitation [Kinnas et al. 1998]. The latest version of MPUF-
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3A also includes wake alignment in circumferentially averaged inflow [Greeley and

Kerwin 1982], non-linear thickness-loading coupling [Kinnas 1992], the effect of

hub and wake alignment including the effect of shaft inclination [Kinnas and Pyo

1999]. However, details of the flows at the blade leading edge and tip cannot be

captured accurately due to the breakdown of either the linear cavity theory or the

thickness-loading coupling corrections. In addition, the current version of MPUF-

3A does not include the effect of cavity sources in the thickness-loading coupling

correction.

2.2 Effective Wake Prediction

Accurate “effective” wake prediction is crucial in determining the cavity extent and

volume, as well as the magnitude of the predicted pressure pulse on the hull in

the presence of the propeller. Experimental investigations and theoretical studies

using steady axisymmetric Euler equations were first presented by [Huang et al.

1976; Huang and Cox 1977] and [Huang and Groves 1980; Shih 1988], respectively.

Later, effective wake prediction methods using RANS equations were developed for

axisymmetric flow applications [Stern et al. 1988a,b; Kerwin et al. 1994, 1997] and

[Stern, 1994] applies the RANS equations to non-axisymmetric applications. In both

methods, the propeller is represented by the body force term in the RANS equations.

In [Choi and Kinnas 1998, 2001] a steady 3-D Euler solver, based on a finite

volume approach and the artificial compressibility method, was developed for the

prediction of the 3-D effective wake of single propellers in unbounded flow or in the

presence of a circular section tunnel.

In [Choi and Kinnas 2000a,b; Choi 2000], a fully three-dimensional unsteady

Euler solver, based on a finite volume approach and the pressure correction method,
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was developed and applied to the prediction of the unsteady effective wake for pro-

pellers subject to non-axisymmetric inflows. It was found that the 3-D Euler solver

predicted a 3-D effective wake inflow which was very close to the time average of

the fully unsteady wake inflow. In the present work the Euler solver developed in

[Choi 2000] is extended to include the effects of the presence of multiple-blade rows.

2.2.1 Multi-Component Propulsors

Multi-component propulsors can offer higher efficiencies due to the cancellation of

the flow swirl downstream of the propulsor. Since each component carries a fraction

of the required thrust, the blade loading and therefore the overall amount of blade

sheet cavitation decreases. Types of multi-component propulsors include contra-

rotating propellers, pre- or post-swirl stator-rotor combinations, and they can be

open, ducted, podded, integrated (with the hull), or internal (such as the impeller

system of a water-jet).

There have been several efforts to design or predict the mean performance of

two-stage propulsors using a lifting-line model for each one of the components.

The steady or unsteady performance of two-stage propulsors has also been

predicted using a lifting-surface model for each one of the components [Tsakonas

et al. 1983; Kerwin et al. 1988; Maskew 1990; Hughes 1993; Yang et al. 1992;

Hughes and Kinnas 1993, 1991].

The vortex lattice method (applied to each one of the components) has been

coupled with Reynolds-Averaged Navier-Stokes solvers in order to predict the per-

formance of multi-component propulsors, including their interaction with the hull

flow [Dai et al. 1991; Kerwin et al. 1994], and more recently in [Warren et al. 2000].
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In the present work, a vortex lattice method (called MPUF-3A, refer Section

2.1) is modified to model the flow around stators. Then MPUF-3A is applied to each

one of the two components (the stator and the rotor), and is coupled with an Euler

solver (called GBFLOW-3X/-3D)1, based on a finite volume method, to predict the

three-way interaction between the inflow and the two stages of the propulsor.

2.2.2 Podded Propulsors

The last few years have seen a breakthrough in the application of podded propulsors.

A podded propulsor is defined as asteerable pod housing an electric motor which

drives an external propeller(definition taken fromwww.sew-lexicon.com).

A podded propulsor may be a push-type (propeller operates aft of the strut)

or a pull-type (propeller operating forward of the strut). At high speeds, the effi-

ciency of the push-type propulsor decreases due to the propeller operating in the

wake peak of the vertical strut [Vartdal and Bloch 2001]. In contrast, the pull-type

propeller provides various advantages in terms of efficiency, controllability, comfort

and vessel lay-out [Blenkey 1997].

In [HYDROCOMP 1999], it is stated that the efficiency of podded propellers

decreases on account of the large hub (� 30% of propeller radius) and design fea-

tures such as variable pitch distribution to ”off-load” the tip and root areas, and a

forward leading rake to increase the distance from the propeller to the pod structure

immediately aft. Even though the propeller itself may be a bit less efficient, the

amount of improvement of the entire system over a conventional propeller can be

significant - on the order of 2%-4%. This observation highlights the need for ac-

1The latest version of WAKEFF-3X/3D which was developed at UT [Choi and Kinnas 2001; Choi
2000].
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curate design and modeling tools to develop complex pod geometries which offer a

distinct advantage over the conventional propeller.

Computational modeling of podded propulsors involves adapting computa-

tional grids around complex geometries. With the improvement in computer speeds

and grid generation techniques, recently several researchers have applied CFD to

podded propulsors. [Ghassemi and Allievi 1999] developed a potential flow method

to calculate the flow around podded propulsors, and [Sanchez-Caja et al. 1999] ap-

plied a viscous code to model the flow around the podded propulsors. More recently

[Hsin et al. 2002] developed a design tool for pod geometries based on a coupled

potential flow/viscous method solver.

2.3 Hull Motion Prediction

Presently available techniques for the analysis of ship motions and sea loads are

mostly based on potential flow assumptions. In these methods viscous effects may

be accounted for by empirical, semi-empirical formulations, which limit their ap-

plications. On the other hand, a RANS equations based technique, naturally in-

corporates the effect of viscosity and hence, produces better results in cases where

viscosity plays an important role.

Among available techniques to predict vessel motion, the strip theory based

”Seakeeper”2, or the panel method diffraction codes such as WAMIT (Waves at

MIT) assume inviscid flow and operate in the frequency domain. [Klaka 2001] ob-

serves that viscous forces are important and the non-linear nature of roll response

requires time domain modeling. According to [Gentaz, 1997], viscous effects are

2developed by Formation Design Systems Pvt. Ltd
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important for rectangular bodies in sway or roll motion. Therefore numerical sim-

ulations based on perfect flow theory can not give satisfactory results. However,

the present technique makes use of an unsteady Euler (inviscid) solver to solve for

the separated flow past bilge keels because it has been shown in [Yeung and Anan-

thakrishnan 1992] that for strongly separated flow, the shear stress is of secondary

importance. This is illustrated in Section 5.3.2, where the flow past a flat plate is

determined using both an Euler and a Navier-Stokes solver. The values of the drag

and inertia coefficients from both solvers compare very well with each other as well

as with experiment (experimental data presented in [Sarpkaya and O’Keefe 1995]).

Some of the past work done on the subject of roll motions includes an investi-

gation into the eddy-making damping in slow-drift motions performed by [Faltinsen

and Sortland 1987]. The authors showed the importance of bilge-keel depth, espe-

cially for low Keulegan-Carpenter numbers. [Sarpkaya, 1995] presented experimen-

tal results for two- and three-dimensional bilge keels subject to an oscillating flow.

The authors conclude that bilge keel damping is affected by the vortex shedding

from the edge of the bilge keel and the use of damping coefficients from flat plates

in a free stream are not necessarily accurate for wall bounded bilge keels. [Yeung

et al. 1998] applied the Free-Surface Random Vortex Method (FSRVM) to a rectan-

gular ship-like section oscillating in roll motion. In [Yeung et al. 2000], the authors

extended the work to include modeling of the complex flow around the bilge keels.

In the FSRVM, the flow-field is solved by decomposing it into irrotational and vor-

tical parts. The irrotational part is solved using a complex-valued boundary-integral

method, utilizing Cauchy’s integral theorem for a region bounded by the body, the

free surface and the open boundary. The rotational part is solved by solving the vor-

ticity equation using the fractional step method. Results obtained using the solver
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are compared to experimental data as well as results obtained by [Alessandrini and

Delhommeau 1995] for various bilge keel depths and forcing function amplitudes.

Most recently, [Miller et al. 2002] demonstrated three-dimensional RANS calcula-

tions to simulate roll motions of a circular cylinder with bilge keels. The numerical

results are compared with an experiment performed at the Circulating Water Chan-

nel at the Naval Surface Warfare Center, Carderock Division.

Other works in this area include [Sturova and Motygin 2002], where the

authors solve, using a multipole expansion method, a system of boundary integral

equations describing the linear two-dimensional water-wave problem, for a horizon-

tal cylinder undergoing small oscillations at the interface of two layers of different

densities.

In this thesis, an Euler solver, based on the finite volume method and using

a collocated grid approach, is used to simulate the flow around a heaving or rolling

rectangular FPSO hull located at the free surface. Results are compared with existing

experimental data and results from other numerical techniques.
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Chapter 3

Numerical Formulation

The detailed formulation for an unsteady, two-dimensional Euler solver is presented

in this chapter. Extension of the solver to a laminar Navier-Stokes solver in two-

dimensions involves inclusion of the viscous terms and this is discussed in Section

3.2. The formulation for a steady axisymmetric and 3D Euler solver is similar to the

2D unsteady formulation, except for the use of the artificial compressibility method

to solve the steady problem. This is discussed in Section 3.3. Details of the axisym-

metric and 3D formulation as applied to the propeller flow/vortical inflow interaction

have been presented in [Choi 2000] and [Choi and Kinnas 2000b].

3.1 Unsteady, 2-D Euler Solver

Consider a two-dimensional (planar), unsteady and incompressible flow confined to

thex � y plane. Thex-axis extends from left to right, along the lower boundary of

the rectangular domain. They-axis points vertically upward and is located such that

the domain is symmetrical about it.

The flow is governed by the Euler equations, and these include the continuity

equation and thex- andy-momentum equations. The vector form of the continuity

and momentum equations for an inviscid fluid can be written as described in Equa-

tions 3.1 and 3.2.
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r � ~̂v = 0 (3.1)

�̂
@~̂v

@t̂
+ �̂r � (~̂v~̂v) = �rp̂ + �̂

~̂
f (3.2)

where~̂v is the total velocity;f̂ is the body force per unit mass;�̂ is the density of the

fluid; p̂ is the pressure; and̂t is the time. In the above equations, the hat ()̂ implies

a dimensional variable.

The above dimensional equations are non-dimensionalized using the follow-

ing reference variables:

� Length scale,L, which is a representative length in the problem being solved.

For example, in the propeller flow problem, the variables are made non- di-

mensional by a reference length which is chosen as the propeller radius R.

� Velocity scale,U1, which is the flow velocity at infinity.

� Density scale,�1 is the density of the undisturbed fluid.

Combinations of these scales are used to non-dimensionalize the body force and

pressure variables. The non-dimensionalization is summarized in Equation 3.3.

Note that in Equation 3.3,̂x is dimensional whilex is non-dimensional.

x =
x̂

L
; y =

ŷ

L
; u =

û

U1
; v =

v̂

U1
; t =

t̂

L=U1
;

p =
p̂

�1U21
; fx =

f̂x
U21=L

; fy =
f̂y

U21=L
; (3.3)

f̂x, f̂y: body force per unit mass.
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Introducing the non-dimensional variables into Equations 3.1 and using the

fact that for an incompressible floŵ� = �1, we get the non-dimensional differential

form of the Euler equations. The Euler equations in the differential form (non-

dimensionalized) are shown in Equation 3.4.

@~U

@t
+
@ ~F

@x
+
@ ~G

@y
= ~Q (3.4)

where the column matrices~U; ~F ; ~G, and~Q are defined as:

~U =

"
u
v

#
; ~F =

"
u2

uv

#
;

~G =

"
uv
v2

#
; ~Q =

" �@p=@x + fx
�@p=@y + fy

#
(3.5)

The derivative of the pressure is moved to the right hand side of the equation and is

grouped inQ with the body force terms because the pressure correction method is

adopted in the unsteady formulation.

3.1.1 Finite Volume Method

In the finite volume method, the fluid domain is discretized into quadrilateral cells or

volumes. (Note: This is not necessary as the finite volume method is equally appli-

cable to unstructured grids as well. However, the present solver has been developed

for quadrilateral cells). The governing momentum equations, represented by Equa-

tion 3.4, are integrated over the volume of each cell of the domain. Applying the

Gauss divergence theorem to convert all volume integrals to surface integrals, we

obtain the following semi-discrete integral equation:

@~U

@t
Sij +

X
edges

�
~Fdy � ~Gdx

�
= ~QSij (3.6)
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whereSij is the area of cell “ij”, i andj are the indices in thex- andy-directions,

respectively. For cell “C” (see Figure 3.1) , area of cellSC is defined as:

SC =
1

2

����� (x3 � x1) (y3 � y1)
(x2 � x4) (y2 � y4)

����� (3.7)

In the formulation presented in this section the following notation is used:

� Each cell is represented by either a capital letter or by the indices of the lower

left corner node. For example, in Figure 3.1, cell “C” can also be referred to

as cell “ij”.

� Each node is represented by a number or by the indices. For example, node

“1” can also be referred to as node “i,j”.

The residual term, defined below, needs to be determined on the edges of the

cells.

Rij �
X
edges

�
~Fdy � ~Gdx

�
=

X
e=N;W;S;E

�
~Fe�ye � ~Ge�xe

�
(3.8)

whereFe andGe are taken as the average of the values ofF andG at the nodes

forming edge “e”.�xe and�ye represent the difference in thex andy coordinates

of the nodes forming edge “e”.

The pressure gradients can be expressed in the numerical formulation as

shown below:

@p

@x
=

1

Sij

X
e=N;W;S;E

pe�ye (3.9)
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Figure 3.1: A quadrilateral FVM cell (left) and the cells influencing a given node
(right) (Figure adjusted from [Kinnas 1999])

and

@p

@y
= � 1

Sij

X
e=N;W;S;E

pe�xe (3.10)

In the current scheme, the node based scheme for space is usedi.e. u; v; p

are computed and stored at the computational nodes. This provides the advantage

that the boundary conditions can be applied directly at the nodes, without requiring

any interpolation.

3.1.2 Ni’s Lax-Wendroff Method for Time

A second-order, explicit method in time is used to march in time. At each compu-

tational node, the unknown~U at time step ’n+1’ can be expressed in terms of the

known ~U at time step ’n’ and the first and the second derivatives, computed at time

step ’n’, by using the Taylor series expansion (Equation 3.11).
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Un+1
i;j ' Un

i;j +

 
@U

@t

!n
i;j

�t +

 
@2U

@t2

!n
i;j

(�t)2

2
(3.11)

where�t is the time step size, the superscript ’n’ represents the value of the current

time step and the subscript (i; j) refers to the node. In order to evaluate the~U at time

step ’n+1’(@U
@t
)ni;j and(@

2U
@t2

)ni;j are evaluated as shown in Equations 3.12 and 3.13.

 
@U

@t

!n
i;j

' 1

4

X
cells

 
@U

@t

!n
cell

=
1

4

X
c=A;B;C;D

 
�R

n
c

Sc
+Qn

c

!
(3.12)

Equation 3.12 implies that the value of(@U
@t
)ni;j is the average of the four

cells that share node (i; j). The second derivative can be computed by taking the

derivative of Equation 3.12 with respect to time. This gives us:

 
@2U

@t2

!n
i;j

' 1

4

X
c=A;B;C;D

@

@t

 
�R

n
c

Sc
+Qn

c

!

=
1

4�t

X
c=A;B;C;D

 
��Rn

c

Sc
+�Qn

c

!
(3.13)

where�(Rn
c ) and�(Qn

c ) are the changes in the values ofRn
c andQn

c between time

steps ’n’ and ’n-1’

The value of the variable at any node is influenced by four adjoining cells

(see Figure 3.1) and the distribution formula shown below shows how the value of

the variable at time step ’n+1’ is determined from the value at the previous time step

and the contributions of the adjoining cells.
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~Un+1
1 = ~Un

1 + (Æ~U1)A + (Æ~U1)B + (Æ~U1)C + (Æ~U1)D (3.14)

where, for example, the influence of cell “C” on node “1” can be expressed as:

(Æ~U1)C =
1

4
(�~UC ��fC ��gC) (3.15)

where,

�~UC = ��t

Sij
Rij +�tQij (3.16)

�fC =
�t

Sij
(�FC�y

l ��GC�x
l) (3.17)

�gC =
�t

Sij
(�GC�x

m ��FC�y
m) (3.18)

In the above equations,Rij is defined according to Equation 3.8 andQij

represents the body force term over cellij (assumed constant over cell area).

�FC =

"
2u�u

�uv + u�v

#
(3.19)

�GC =

"
�uv + u�v

2v�v

#
(3.20)

where�u and�v represent the average change in the variablesu andv for a given

cell i.e. the average of the variable values at the four nodes forming the cell.
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The artificial dissipation (or viscosity) is applied to improve the stability of

the numerical method [Anderson 1995]. The second and fourth order dissipations,

respectively�2 and�4, are scaled by�t and added to Equation (3.14).

Un+1
1 = Un

1 +
X

c=A;B;C;D

(ÆU1)
n
c +�t (�2 � �4) (3.21)

with

�2 = �2 (ÆiiU
n
1 + ÆjjU

n
1 ) (3.22)

�4 = �4 (ÆiiiiU
n
1 + ÆjjjjU

n
1 ) (3.23)

where, the artificial dissipation coefficients,�2 and�4, are user specified constant

parameters that control the amount of the dissipation.

The finite central difference operators,Æii andÆiiii, for example, are defined

as follows (for a constantj).

Æii = ( )i�1 � 2( )i + ( )i+1 (3.24)

Æiiii = ( )i�2 � 4( )i�1 + 6( )i � 4( )i+1 + ( )i+2 (3.25)

Note that the artificial dissipation coefficients should be adjusted appropriately ac-

cording to the grid resolution because the finite differences, given by Equations

(3.24) and (3.25), depend on the cell size. For most of cases, the second order

dissipation coefficient,�2, is set equal to zero, and the fourth order artificial dissipa-

tion coefficient,�4, is determined for each case by trial and error so that it has the

smallest value for which the Euler solver converges.

For the numerical scheme, a convergence criteria needs to be specified in

order to stop the computation when the desired degree of accuracy is achieved. In
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the current scheme convergence is achieved by requiring the following equations to

be satisfied.

max
i;j

(j�pj) < �; (3.26)

max
i;j

(j�uj) < �; (3.27)

max
i;j

(j�vj) < � (3.28)

(e.g.� = 10�6) (3.29)

wherej�uj; j�vj; andj�pj are the changes in the values of the variables from one

time step to another, for all nodes in the domain.

3.1.3 Pressure Correction Method for Continuity Equation

As there is no independent equation to determine the pressure, the pressure correc-

tion method or the SIMPLE (Semi-Implicit Method for Pressure Linked Equations)

method [Patankar 1980; Rhie and Chow 1983] is used in order to solve for the pres-

sure. This method is based on the fact that the velocity components should satisfy

the continuity equation at all times. Therefore, the new pressure is determined by ap-

plying a ’correction’ to the pressure at the previous time step and this ’new’ pressure

is such that the corresponding velocity components satisfy the continuity equation.

The idea of SIMPLE method is followed, butthe collocation scheme in which all

variables are defined and stored at nodesis kept.

The intermediate velocity field (denoted with the superscript�) is determined

at an intermediate time step using an intermediate (or guessed at first) pressure field,

p�. Since the method is iterative, to find the correct (within a given tolerance) ve-

locity and pressure fields for time step ’n + 1’, the intermediate fields are updated
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repeatedly. Thus, the intermediate velocity and pressure are not marked with the

time step index, understanding that they are between the time steps ’n’ and ’n + 1’.

U�
i;j = U

n
i;j +

X
c=A;B;C;D

(ÆUi;j)
�
c +�t (��2 � ��4) (3.30)

In Equation 3.30,(ÆUi;j)
�
c is determined by an equation similar to Equation

3.15, but by using the intermediate pressure field,p�. Also, the artificial dissipations,

��2 and��4 are evaluated based on the intermediate velocity field,U�.

The pressure and corresponding velocity corrections (represented by prime

0) are determined using the Poisson equation and are defined as follows:

pn+1i;j = pni;j + p0i;j (3.31)

Un+1
i;j = U�

i;j +U
0
i;j (3.32)

wherep0i;j andU0
i;j are the corrections to the pressure and the velocity fields, respec-

tively.

From the definition of the velocity correction given by Equation (3.32), the

expression forU 0
i;j can be obtained by subtractingU�

i;j of Equation (3.30) fromUn+1
i;j

of Equation (3.14) as shown next.

U0
i;j � Un+1

i;j �U�
i;j

=
X

c=A;B;C;D

(ÆUi;j)
0
c +�t (�n2 � ��2 � �n4 + ��4) (3.33)

where,(ÆUi;j)
0
c is defined as(ÆUi;j)

n
c � (ÆUi;j)

�
c .
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As is done in the SIMPLE method, only the terms which include the pressure

gradient are assumed to be non-zero in Equation (3.33). That is,

U0
i;j =

�t

4

X
c=A;B;C;D

" �@p0=@x
�@p0=@y

#
: (3.34)

The pressure correctionp0i;j is found by solving the pressure correction Equa-

tion (3.35). The following pressure correction equation forp01 can be derived from

the continuity over the block of volume around the node “1”, with the substitution

of the velocity correction expressed as the pressure weighted interpolation. (Note:

In the next equation, node numbers are used instead of the indices)

For node “1”, we have:

g1p
0
1 + g2p

0
2 + g4p

0
4 + g6p

0
6 + g8p

0
8 = go (3.35)

The terms in the above equation are defined below:

go =
QM

��t
(3.36)

whereQM is the residual of the continuity equation,� is the velocity under-relaxation

factor and�t is the time step.

g2 = ��2
J
�yN � �1

J
�xN (3.37)

g4 =
�2
J
�yE +

�1
J
�xE (3.38)
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g6 =
�2
J
�yS +

�1
J
�xS (3.39)

g8 = ��2
J
�yW � �1

J
�xW (3.40)

g1 = �g2 � g4 � g6 � g8 (3.41)

with the subscriptsN; S;E;W are defined as in Figure 3.1 andJ; �1; �1 etc. defined

in Equations 3.50 and 3.51.

The pressure correction equation is solved iteratively, as shown in Equation

3.42, using the following explicit expression forp01 with the under-relaxation,�pp.

(p01)new = (1� �pp) � (p01)old (3.42)

+ �pp � 1
g1

n
go � (g2p

0
2 + g4p

0
4 + g6p

0
6 + g8p

0
8

o

TheUn+1
i;j determined according to Equation 3.32 satisfies the continuity

equation.

Sequence of Operations (SIMPLE)

The following operations are performed at each time step:

1. Guess the pressure fieldp�.

2. Solve the momentum equation by Equation (3.30), to obtain intermediate ve-

locitiesu�, v�.

3. Solve pressure correction equation, Equation (3.35) forp0.

4. Calculate (correct) pressurep and velocitiesu, v by Equation.(3.43).
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p = p� + p0; u = u� + u0; v = v� + v0 (3.43)

5. Treat the corrected pressurep as a new guessed pressurep�, return to step 2,

and repeat until eitherQM is small enough or a prescribed number of iterations

is reached.

For each time step, the following convergence criterion is checked:

max
all cells

(jQM j) < " (3.44)

QM = residual of the continuity equation

3.2 Unsteady, 2-D Navier-Stokes Solver

The formulation for the 2-D Navier-Stokes solver is similar to that of the 2-D Euler

solver, except for the additional viscous terms that enter the equations. The dimen-

sional vector form of the Navier-Stokes equations can be written as described below:

r � ~̂v = 0 (3.45)

�
@~̂v

@t̂
+ �r � (~̂v~̂v) = �rp̂ + �

~̂
f + �r2~̂v (3.46)

where� is the coefficient of dynamic viscosity.

Non-dimensionalizing the above equation, using the reference parameters as

described in Equation 3.3, we obtain an equation similar to Equation 3.4, but with

the column matrices~U; ~F ; ~G, and ~Q redefined as:
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~U =

"
u
v

#
; ~F =

"
u2 � 2

Re
@u
@x

uv � 1
Re

�
@u
@y

+ @v
@x

� # ;
~G =

2
4 uv � 1

Re

�
@u
@y

+ @v
@x

�
v2 � 2

Re
@v
@y

3
5 ; ~Q =

" � @p

@x
+ fx

�@p

@y
+ fy

#
(3.47)

whereRe is the Reynolds number for the flow, defined asRe = �U1L

�
.

The terms
@u

@x
,
@u

@y
,
@v

@x
, and

@v

@y
in ~F and~G (Equation 3.47) need to be calcu-

lated at each node. In order to do this, viscous stresses are first computed in the grid

coordinate (�; �), and transformed to (x; y)-system by using tensor transformation.

8>>>><
>>>>:

 
@u

@x

!
 
@u

@y

!
9>>>>=
>>>>;
=

1

J

2
664

�2 ��2

��1 �1

3
775
8>>>><
>>>>:

 
@u

@�

!
 
@u

@�

!
9>>>>=
>>>>;

(3.48)

8>>>><
>>>>:

 
@v

@x

!
 
@v

@y

!
9>>>>=
>>>>;
=

1

J

2
664

�2 ��2

��1 �1

3
775
8>>>><
>>>>:

 
@v

@�

!
 
@v

@�

!
9>>>>=
>>>>;

(3.49)

J = �1�2 � �2�1 (3.50)

�1 = xi+1;j � xi�1;j; �1 = xi;j+1 � xi;j�1

�2 = yi+1;j � yi�1;j; �2 = yi;j+1 � yi;j�1 (3.51)

The remaining formulation is developed as described for the Euler solver,

with the terms modified appropriately to include the viscous effects. For example,

the terms�FC and�GC in Equation 3.16 now become:
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�FC =

"
2u�u+�p
�uv + u�v

#
� 1

Re

"
2�(@u=@x)

�(@u=@y) + �(@v=@x)

#
(3.52)

�GC =

"
�uv + u�v
2v�v +�p

#
� 1

Re

"
�(@u=@y) + �(@v=@x)

2�(@v=@y)

#
(3.53)

3.3 Steady Euler Solver

The steady Euler solver is used to solve the propeller flow problem. The axisym-

metric and the 3-D formulations are presented in the next two sections. Numerical

details can be found in [Choi 2000] and [Choi and Kinnas 2001]. While the axisym-

metric version has been used for the stator-rotor problem, the 3-D version has been

used for the non-axisymmetric podded propulsor as well as to model cavitation on

the rotor blade in the presence of the stator modified non-axisymmetric wake.

The Euler equations are discretized using the finite volume method. As these

equations are steady, the artificial compressibility method [Chorin 1967] is adopted.

Apart from the use of the artificial compressibility method the same numerical meth-

ods, as have been discussed for the 2-D unsteady Euler solver, are used for the ax-

isymmetric and 3-D solvers.

A ship-fixed coordinate system, as shown in Figure 3.2, is used for the steady

axisymmetric and 3-D formulations . The origin of the coordinate system is at the

center of the propeller disk, with thex-axis pointing downstream along the propeller

shaft axis. A Cartesian coordinate system is used for the three-dimensional formula-

tion, while a cylindrical coordinate system is used in the axisymmetric formulation.

In the Cartesian coordinate system, the positivey points vertically upward, and the
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Figure 3.2: Ship-fixed Cartesian coordinate system (taken from [Choi 2000])

positivez axis towards the port side (left) of the ship. In a cylindrical system, the

positiver is outward, and the angle� is measured around thex-axis starting from

the top (y-axis), as shown in Figure 3.2.

3.3.1 Axisymmetric Steady Euler Solver

The axisymmetric Euler solver is used to solve for flow around axisymmetric hull

appendages and also in preliminary propeller design under axisymmetric (circumfer-

entially averaged) inflow. The most advantageous characteristic of the axisymmetric

Euler solver is that it takes less time to run than the three-dimensional solver.

The dimensionless governing equations can be written in the cylindrical co-

ordinate system (x, r, �) with the corresponding velocity components (ux, ur, u�). In

cylindrical coordinate system, the steady Euler equations can be written as follows:

@F

@x
+
@G

@r
+
@H

@�
= Q (3.54)

In equation (3.54), the column matricesF, G, H, andQ are defined as fol-
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lows:

F =

2
6664

rux
r(u2x + p)
ruxur
ruxu�

3
7775 ; G =

2
6664

rur
ruxur

r(u2r + p)
ruru�

3
7775 ;

H =

2
6664

u�
uxu�
uru�
u2� + p

3
7775 ; Q =

2
6664

0
rfx

(u2� + p) + rfr
�uru� + rf�

3
7775 (3.55)

For the axisymmetric flow, the following assumption is also made. This

implies axisymmetryi.e.H does not vary in the circumferential direction.

@H

@�
= 0 (3.56)

For the steady Euler solver, the pressure correction approach cannot be used.

Instead, the artificial compressibility method [Chorin 1967] is adopted. In the ar-

tificial compressibility method, the following pseudo-unsteady terms are added to

the left hand side of the steady incompressible Euler equation (3.54). Now these

equations resemble the unsteady compressible Euler equations and can be solved

similarly.

@U

@t�
� @

@t�

2
6664

r~�
rux
rur
ru�

3
7775 (3.57)

It should be noted that the use of pseudo time does not allow us to use the

method to solve for unsteady problems.t� is a pseudo-time and should be regarded

just as an iteration parameter.
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Following Chorin [Chorin 1967], the artificial density,~�, is related to the

pressure,p, through the following artificial equation of state.

p =
~�

�
(3.58)

In equation (3.58),� is the artificial compressibility factor which is a control-

lable constant. The solution does not depend on the value of the artificial compress-

ibility factor, �, which is analogous to a relaxation parameter. The method requires

that the artificial Mach number,

M =

q
u2x + u2r + u2�

c
; (3.59)

is less than 1.0, where the artificial speed of sound is defined as

c =
1p
�
: (3.60)

The addition of the pseudo-unsteady terms (3.57) to the steady incompressible Euler

equation (3.54), with the use of equation (3.56), brings the axisymmetric governing

equations to the following form.

@U

@t�
+
@F

@x
+
@G

@r
= Q (3.61)

with

U =

2
6664

rp
rux
rur
ru�

3
7775 ; F =

2
6664

rux=�
r(u2x + p)
ruxur
ruxu�

3
7775 ; G =

2
6664

rur=�
ruxur

r(u2r + p)
ruru�

3
7775 ; (3.62)

Q =

2
6664

0
rfx

(u2� + p) + rfr
�uru� + rf�

3
7775
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As the boundary conditions and body forces are steady, the solution con-

verges to the steady state in the limitt� ! 1. When steady state is reached, the

pseudo-unsteady term,@U=@t�, becomes zero, and equations (3.61) and (3.62) are

equivalent to those of the incompressible flow. In this way, the artificial compress-

ibility method guarantees that the steady incompressible solution is obtained at the

end (i.e. at large pseudo-times).

The formulation of the finite volume method for equation (3.61) is similar to

that for a two-dimensional planar problem since the meridional coordinate system

(x; r) can be regarded as a two-dimensional coordinate system(x; y). The details of

the numerical implementation of the two-dimensional Euler equations (3.61) have

already been discussed in detail in Section 3.1.

3.3.2 Three-dimensional Steady Euler Solver

The method of artificial compressibility [Chorin 1967] is applied again in the three-

dimensional steady Euler solver.

The dimensionless governing equations can be written in the following three-

dimensional Cartesian form using non-dimensional variables.

@U

@t�
+
@F

@x
+
@G

@y
+
@H

@z
= Q (3.63)

The termsU, F, G, H, andQ are defined as follows.

U =

2
6664
p
u
v
w

3
7775 ; F =

2
6664

u=�
u2 + p
uv
uw

3
7775 ; G =

2
6664

v=�
uv

v2 + p
vw

3
7775 ; H =

2
6664

w=�
uw
vw

w2 + p

3
7775 ; Q =

2
6664

0
fx
fy
fz

3
7775
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Figure 3.3: Cell(i; j; k) on which the finite volume method is applied (taken from
[Choi 2000])

When steady state is reached, the first term in equation (3.63) vanishes and

the incompressible steady flow solution is obtained.

For the finite volume formulation, the Euler equations (3.63) are integrated

over a cell of volumeV, such as the one shown in Figure 3.3. The formulation is

similar to the 2-D solver formulation, but a lot more involved.

The time step size is determined so that the Courant Friedrichs Lewy (CFL)

condition [Courant et al. 1967] is satisfied.

�t < min
i;j;k

�
min

�
�x

u
;
�y

v
;
�z

w

��
(3.64)

The iteration in time is continued until the maximum change of variables is

less than a certain specified tolerance (for example� = 10�6).
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3.4 Vortex Lattice Method for Propeller Potential flow

The present section presents a broad overview of the vortex lattice method. The

complete formulation of the potential flow solver and the vortex lattice method may

be found in chapter 6 of Ohkusu [Ohkusu 1996]. Thevortex lattice methodwhich

solves numerically for the unsteady potential flow field around a cavitating propeller

has been used successfully since the method was first developed by Kerwin and Lee

[Kerwin and Lee 1978], Lee [Lee 1979] and Breslin et. al. [Breslin et al. 1982]. This

method is classified as a lifting surface method because the singularities (vortices

and sources) are distributed on the blade mean camber surface, as opposed to the

other class of methods, the surface panel methods, in which the singularities are

distributed on both sides of the blade surface.

In the vortex lattice method, a special arrangement of line vortex and source

lattice is placed on the blade mean camber surface and its trailing wake surface.

The three effects being modeled by these singularities are (a) a vortex lattice on

the blade mean camber surface and the trailing wake surface to represent the blade

loading and the trailing vorticity in the wake, (b) a source lattice on the blade mean

camber surface to represent the blade thickness, and (c) a source lattice throughout

the predicted sheet cavity domain to represent the cavity thickness.

The unknown strengths of the singularities are determined so that the kine-

matic and the dynamic boundary conditions are satisfied at the control points on the

blade mean camber surface. The kinematic boundary condition requires that the flow

velocity is tangent to the mean camber surface, and is applied at all control points.

On the other hand, the dynamic boundary condition requires that the pressure on

the cavitating part of the blade mean camber surface is equal to the vapor pressure,

and is applied only at the control points that are in the cavitating region. One of the
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complexities in the analysis of the cavitating propeller is that the extent of cavitation

changes continuously as the blade rotates, and thus the domain in which the dynamic

boundary condition is satisfied must be determined in an iterative way.
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Chapter 4

The Stator-Rotor and Podded Propulsor

4.1 The Coupled Solver

In this chapter, the coupled vortex lattice method and Euler solver approach is dis-

cussed. Details can be found in, [Choi 2000] and [Choi and Kinnas 2000b]. Next,

the application of the above method to the stator-rotor and podded propulsor sys-

tem is presented. The purpose of using this approach is to determine the effective

wake (modified due to the presence of the other component or the strut in the case of

the podded propulsor) and evaluate the performance of each component under this

modified inflow.

4.1.1 Decomposition of the Flow Field

The total unsteady flow field around a propeller is a function of both space and time.

This flow field can be decomposed into two parts; one rotational and one irrotational

component:

~qt(~x; t) = ~qr(~x; t) + ~qi(~x; t) (4.1)

where, the subscripts “t”, “r” and “i” stand for total, rotational and irrotational, re-

spectively.
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In the present method, thepropeller induced velocityfield, ~qp, is used in

place of the irrotational velocity field,~qi. From potential flow theory, the propeller

induced velocity,~qp, can be expressed in terms of the perturbation potential,�p, by

the following relation [Choi 2000].

~qp(~x; t) = r�p(~x; t) (4.2)

The vortex lattice method (VLM) is used to solve for this perturbation potential on

the propeller as shown on the left side of Figure 4.1.

The perturbation potential as defined by equation (4.2) with respect to a coor-

dinate system which rotates with the blade at a constant angular velocity,~
, should

satisfy the Laplace equation,

r2�p = 0: (4.3)

TheKinematic Boundary Condition(KBC) applied on the blade mean cam-

ber surface results in the following equation [Choi 2000]:

@�p
@n

= �
�
~qe + ~
� ~x

�
� ~n (4.4)

where,~n is the unit vector normal to the mean camber surface, and~qe is the effective

wake as defined in the next paragraph. In addition, a Kutta condition must be applied

at the trailing edge of the blades with the assumed trailing wake geometry.

Then, the rotational part,~qr, can be obtained by subtracting this irrotational

field, ~qp, from the total velocity field,~qt. The rotational part determined in this way

is defined as the effective wake velocity or, simply, the effective wake. The word
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qt

Dqt / Dt = -∇p/ρ + f

Figure 4.1: Interaction between the potential flow vortex lattice method (VLM) and
the finite volume method (FVM) based Euler solver (taken from [Choi and Kinnas
2000b])

40



“wake” comes into the name because the propeller inflow is also the ship’s wake.

The effective wake,~qe, is thus given as follows:

~qe(~x; t) � ~qt(~x; t)� ~qp(~x; t)

= ~qt(~x; t)�r�p(~x; t) (4.5)

The effective wake,~qe, is used as the inflow, when solving for the propeller

perturbation potential,�p. The total velocity,~qt, is evaluated from the Euler solver,

as described in the next paragraphs. Once the potential�p is found, two things can be

calculated; (a) the pressure on the propeller blade surface as a function of space and

time, and (b) the propeller induced velocity~qp, or equivalentlyr�p. The propeller

blade pressure is needed to determine the body force distribution in the Euler solver,

and the propeller induced velocity is needed when the effective wake is calculated.

If unsteady sheet cavitation exists on the blade, then the extent and the thickness of

the cavities are also determined as part of the solution. On the other hand, the global

flow field is rotational and is solved by the finite volume method Euler solver, as

shown on the right side of Figure 4.1.

The propeller loading obtained from the VLM is converted into the body

force ~f , and this body force is distributed over the cells corresponding to the blade

location.

When the Euler equations,

D~qt
Dt

= �rp
�

+ ~f; (4.6)

are solved, the total velocity~qt is obtained. The effective wake can then be computed

by equation (4.5) using the propeller induced velocity,~qp, already known from the
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Propeller
Geometry

Propeller Loading
& Induced Velocity

FVM Euler Solver

VLM Propeller Analysis

Method

Figure 4.2: Flow chart showing the overall iterative process to compute the effective
wake (the dashed arrow implies that the nominal wake is used as the propeller inflow
only in the initial iteration) (taken from [Choi 2000])

propeller VLM. The overall process is iterative, between the potential flow solution

of the propeller and the Euler equation solution of the global flow field, as shown in

Figure 4.1.

4.1.2 Iterative Process to Compute the Effective Wake

Since the effective wake and the propeller loading depend on each other, the over-

all process must be iterative. The two components in the iterative process are the

propeller solver (MPUF-3A) and the Euler equation solver (GBFLOW-3X/3D) as

shown in Figure 4.2. The iterative process can start with the propeller analysis using

the nominal wake as inflow. Using the computed propeller loading, the body force

representing the propeller in the Euler equations can be calculated. The Euler solver

computes the total velocity field using the body force found earlier. The effective

wake can then be computed by subtracting the propeller induced velocity from the
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total velocity field. Finally, the VLM solver uses the effective wake as the inflow

to compute the updated propeller loading. The iterative process continues until con-

vergence is reached. It has been found that the iterative process usually converges

within three to five iterations depending on the convergence criterion specified (see

Section 4.2.2).

4.1.3 Propeller Induced Velocity

Since the total velocity field is obtained as a solution of the Euler equations, the

propeller induced velocity field should be known first to compute the effective wake

by equation (4.5). The propeller induced velocity is computed by an indirect two

step method. After the propeller solution is obtained, the propeller induced potential

is computed at a vertical plane just upstream of the propeller. The location of the

vertical plane should be chosen so that the plane is not too close to the singularities

distributed over the propeller blade so that the local discretization errors are mini-

mized. Usually this plane is located one panel size away from the blade. The plane

also should not be too far from the propeller, because there could be some variation

in the predicted effective wake between this plane and the propeller plane. Once

the induced potentials are determined at all points located on the plane, the three

components of the induced velocity vector can then be computed by numerically

differentiating the induced potentials.

4.1.4 Propeller Body Force

In order to obtain the body force distribution on the finite volume cells which corre-

spond to the location of the blade, the pressure difference across the blade surface,

�p, is integrated over the area of the lifting surface intersected by the finite volume
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Âc : Area of Lifting Surface
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~n
~f

V̂c : V olume of cell

intersected by the cell

Figure 4.3: Body force determination in the Euler solver

cell, as shown in Figure 4.3.

The three-dimensional body force-pressure relation can be written indimen-

sionalterms as follows.

V̂c�̂~̂f = �p̂Âc~n (4.7)

whereV̂c is the cell volume;�p̂ is the pressure difference across the blade surface

(evaluated in MPUF-3A);Âc is the area of the mean camber surface contained in

the cell; and~n is the normal vector to the mean camber surface. To obtain the
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corresponding expression for the axisymmetric body force, the cell volume,Vc, in

Equation 4.7 must be changed to the volume of the ring that is created by rotating

the area of the side of the cell along the meridian plane,Acell, about the shaft axis.

Thus, the corresponding dimensionless relation becomes as follows.

 
2�r̂Âcell

R R2

!0B@ ~̂
f

U21=R

1
CA
 

U2
1

4n2D2

!
=

 
�p̂Âc~n

�̂n2D4

!
(4.8)

or

2�rAcell
~f

J2
s

4
= ~FP (4.9)

where, the dimensionless pressure force~FP can be obtained from the propeller po-

tential flow solver (MPUF-3A),̂r is the radius of the centroid of the cell,R andD

are the propeller radius and diameter,Js is the advance ratio based on ship speed,

andn is the rotational frequency of the propeller.

As a result, the dimensionlessaxisymmetricbody force can be evaluated

using the following formula:

~f =

 
2

�rAcellJ2
s

!
~FP (4.10)

4.1.5 Method for Handling Two Components

For multi-component propulsors it is essential that the solver capture the interac-

tion between the various components. The above described method can be easily

extended for two- or more component propulsors.

A schematic diagram for the axial velocity distribution along the shaft axis

is shown in Figure 4.4. The propulsion system consists of two components, which

45



tq

i2

x

i1

q
inf

q

q

p1x

q

x

p2x

e1x e2

Figure 4.4: Schematic diagram showing the axial velocity distribution along the
shaft axis; the total velocityqt, the induced velocities of each components,qp1 and
qp2

are located atx = xp1 andx = xp2. At each component locationsxp1 andxp2, the

total velocity can be considered as

~qt(xp1) = ~qa(xp1) + ~qp1(xp1) + ~qp2(xp1) (4.11)

~qt(xp2) = ~qa(xp2) + ~qp1(xp2) + ~qp2(xp2) (4.12)

where,~qa(xp1) and~qa(xp2) include the inflow and all the effects of the interaction.

At these locations, the effective inflow to each component can be written as follows.

~qe1(xp1) � ~qt(xp1)� ~qp1(xp1)

= ~qa(xp1) + ~qp2(xp1) (4.13)

~qe2(xp2) � ~qt(xp2)� ~qp2(xp2)

= ~qa(xp2) + ~qp1(xp2) (4.14)

Since it is difficult to evaluate velocities accurately at the propeller locations,
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the effective wake at the propeller is assumed to be equal to that which is evaluated

at a plane just upstream of the propeller.

~qe1(xp1) ' ~qe1(xe1) = ~qt(xe1)� ~qi1(xe1) (4.15)

~qe2(xp2) ' ~qe2(xe2) = ~qt(xe2)� ~qi2(xe2) (4.16)

This assumption works very well in predicting the effective wake for single

component cases. However, in the case of two-components, the difference in the

induced velocity due to the other component between the two locationsxp andxe

is neglected. The effect of this assumption can be assessed by evaluating the effec-

tive wake at different locations upstream of each component and by comparing the

resulting values of the inflow and the predicted forces [Kinnas 2001].

The overall procedure is shown in Figure 4.5. The iteration between the

Euler solution and the two potential flow solutions (one for each component) is

performed in a way that the new loadings on the two components are updated simul-

taneously. The steps within one global iteration can be summarized as follows.

1. Calculate the loading of each component based on the previous or the best

guess of the effective inflow to each component. Nominal wake inflow can be

used as the initial guess for most cases.

2. Apply the loadings to each component as body forces and solve the Euler

equations to obtain the total velocity field.

3. Compute the next prediction of the effective inflow for each component by

using Equations 4.15 and 4.16.
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The above procedure is repeated until convergence of the predicted forces is within

a specified tolerance. As will be shown in later sections usually 3-5 iterations suffice

depending on the convergence criterion specified.

4.2 The Stator-Rotor Propulsor

This section deals with the analysis technique used for solving the effective wake

problem for a stator-rotor couple, using a vortex lattice based potential solver and an

Euler solver.

A non-rotating stator blade is placed upstream or downstream of the rotating

propeller (and accordingly called the pre- or post-swirl stator) for the purpose of

swirl cancellation. The stator blade-system allows a partial recovery of the rotational

energy by cancelling the swirl generated by the rotor, and therefore the stator serves

as an efficiency increasing device. This gain outweighs the loss that occurs due to

the stator blocking the flow and inducing a drag opposing the rotor’s thrust. The

combined system offers a higher performance efficiency as compared to a single-

component system.

The treatment of a stator by the potential solver is similar to that of a pro-

peller. The stator is analyzed as a propeller with zero angular frequency. The wake

from the stator is considered to have a large pitch, resulting in a wake that goes

straight back from the blades, as shown in Figure 4.6. The stator thrust and torque

coefficients, which need to be defined in terms of the ship speed, are specified below.

The torque coeÆcient CQ =
Q

0:5�V 2
s �R

3
(4.17)
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Figure 4.6: Stator blade and wake geometry

The thrust coeÆcient CT =
T

0:5�V 2
s �R

2
(4.18)

The flow-field developed in the presence of the stator-rotor couple is solved

for using the coupled approach discussed in the previous section. The potential flow

solver solves for the panel singularity strengths and blade pressure forces for each

component subject to a given inflow. The pressure forces obtained are input into

the Euler solver, and are used to determine the body forces. The Euler equations

are solved for the given body forces and the total velocity flow-field is determined.

Using known blade and wake panel strengths, the propeller induced velocities can

be determined at a given axial location upstream of the component. The effective

velocity, defined in Equation 4.15, can then be obtained. The next potential solver

run uses this modified effective inflow. The iteration process continues till conver-

gence is achieved. The zeroth iteration corresponds to each component subject to a

uniform inflow.

In the Euler solver, the stator is represented by body force cells, akin to a pro-

peller. The axial component of the body force for a stator is negative (corresponding
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to drag) and that of the propeller is positive, as shown in Figure 4.7. Also the tan-

gential body force components are opposite in direction for the two components,

resulting in the cancellation of rotational velocities.
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Dstator/ Drotor = 1.2

Body Force Distribution in GBFLOW-X

RHUB / R = 0.283 RHUB / R = 0.2

Xeff 1 Xp1 Xeff2 Xp2

Figure 4.7: Two-dimensional grid showing hub geometry and the stator-rotor body
force distribution

In the potential solver the hub is modeled using the image method [Kinnas

1996]. In the Euler solver, the hub is modeled by specifying the lower boundary of

the grid to conform to the hub geometry. Separation of flow at the transition zones

is avoided by smoothing out sharp corners in the hub geometry.

4.2.1 Convergence Studies

The loading or the circulation distribution of a propeller is a measure of the thrust

provided by the propeller. The following figures show plots of the circulation dis-
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Table 4.1: Variation in thrust and torque coefficients for different chord- and span-
wise spacings, obtained using MPUF-3A for the Bowling stator

Span- & Chord-wise spacing CT 10CQ

half-cosine & full-cosine -0.0721 -1.866
uniform & full-cosine -0.0716 -1.868
uniform & half-cosine -0.0706 -1.824

Table 4.2: Convergence of thrust and torque coefficients with increasing values of
the wake P/D, obtained using MPUF-3A for the Bowling stator

P/D CT 10CQ

5 -0.0700 -1.818
20 -0.0714 -1.854
50 -0.0718 -1.8639

tribution as a function of radius, obtained by varying various run parameters in the

VLM solver. The results presented are for a nine-bladed stator [Bowling 1987]. In

order to validate the performance of the potential solver for a stator, convergence

studies were performed by varying several input parameters such as panel spacing

on the blade (see Figure 4.8) and pitch of the wake (see Figure 4.8 (b)). In Fig-

ure 4.8,� is the propeller blade circulation distribution;R is the propeller radius;

andP=D refers to the non-dimensional pitch of the helical propeller wake, made

non-dimensional by the propeller diameter,D. A more detailed explanation of these

parameters can be found in [Lee et al. 2001].

The convergence of the thrust and torque coefficients for the two convergence

studies performed is summarized in Tables 4.1 and 4.2.

The circulation distribution obtained from the current potential solver scheme,
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with thickness loading coupling disabled, shows a good correspondence with results

from PBD-141. For the MPUF-3A run, the blade was represented by 20 chord-

wise panels and 27 span-wise panels; the thickness loading coupling and the viscous

pitch correction were disabled; the hub image effect was included; the panels were

distributed using a half-cosine spacing in the span-wise direction and a full cosine

spacing in the chord-wise direction.

1MIT’s Lifting Line code
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4.2.2 Comparison of Numerical results with Experiment

Forces on a stator and rotor combination were observed experimentally in the MIT

water tunnel and the present results were validated against the experimental data

as well as the results presented in [Warren 1999]. The stator, 1.2 feet in diameter,

was designed to operate with DTNSRDC (David Taylor Naval Ship Research and

Development Center) model propeller 4497, which is one foot in diameter. The

stator and rotor geometry are described in [Bowling 1987]. The grid geometry used

for the coupled analysis is shown in Figure 4.7.

It usually takes three to five iterations for the values of the thrust and torque

coefficients to converge. Figure 4.10 shows the convergence of these coefficients

with the number of iterations. The flow-field obtained is shown in Figure 4.11.

Within the propeller radius, the axial velocity increases due to the rotor action. The

inflow velocity remains unchanged as we move radially away from the propeller.

A cancellation of the tangential (swirl) component of the velocity is seen in Figure

4.11 (b). The velocity profile upstream of the stator (see Figure 4.12 (a)) shows an

accelerated axial component and almost zero swirl. The rotor (Figure 4.12 (b)) sees

a strong swirl component and a retardation of the axial velocity (due to the stator

blocking the flow).

In spite of the inviscid flow assumptions made by the Euler solver, the cir-

culation distribution obtained compares well (except at the hub) to the blade load-

ing predicted by the viscous solver (results for a two-component system in [War-

ren 1999] are obtained using a coupled lifting line/RANS solver). Results from

both methods are off the experimental values, the VLM under-predicting the results

(compared to the experimental results, the thrust and torque coefficients are lower

by 2.5 and 6.6 %, respectively) while the Lifting line method over-predicts (Table

55



T

T T T T T T T T

Q

Q
Q Q Q Q Q Q Q

Number of iterations

K
T
,1

0
K

Q

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KT

10 KQ

Experimental KT

Experimental 10 KQ

T

Q

Convergence of thrust and torque coefficients
for rotor DTMB 4497

Converged values

KT = 0.3357
10 KQ = 0.633

Note: 0th iteration for uniform inflow

Experimental values

KT = 0.3443
10 KQ = 0.6916

Figure 4.10 (a)

T

T

T T T T T T T

Q

Q

Q Q Q Q Q Q Q

Number of iterations

C
T

1
0

C
Q

0 2 4 6 8
-0.085

-0.08

-0.075

-0.07

-0.065

-0.06

-2.15

-2.1

-2.05

-2

-1.95

-1.9

-1.85

-1.8

CT

10 CQ

T

Q

Convergence of thrust and torque coefficients
for the stator

Converged values

CT = -0.0828
10 CQ = -2.131

Figure 4.10 (b)
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4.3).

The rotor and stator blade cavitation results presented next are hypothetical

and are not compared with any experimental data. Comparison with experiments on

cavitating stator-rotor couple is required in order to further validate the method. Due

to the presence of the stator, the rotor sees a non-axisymmetric decelerated inflow

which affects the cavitation pattern on the rotor blade. In order to obtain the non-

axisymmetric wake, the stator-rotor couple is solved for using a 3D Euler solver.

Figure 4.14 shows the 3D stator-rotor geometry and corresponding FVM body force

distribution used in the 3D solver. The stator is represented by cells fixed in space,

while the body force for the rotor is circumferentially averaged. Finally, the rotor is

solved subject to the stator-modified effective wake (see Figure 4.15). In Figure 4.15,
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Table 4.3: Comparison of thrust and torque coefficients for propeller DTMB4497,
obtained using MPUF-3A/GBFLOW-3X and MIT’s PBD-14 and DTNS3D

CT 10CQ KT 10KQ

MPUF-3A &
GBFLOW-3X -0.0828 -2.131 0.3357 0.646
(70x50 cells)

PBD-14
and -0.0839 -2.1138 0.3694 0.7316

DTNS3D2

Experimental - - 0.3443 0.6916
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ZStator/Rotor Geometry
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QBx
2

1.4
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-2.8

-3.4

-4

Axial Body Force

Figure 4.14: 3D stator-rotor geometry and body force cells

the propeller effective velocity field on a plane 0.3 radius upstream of the propeller

plane is shown. A deceleration of the flow is observed at angles corresponding to the

stator blade locations. The gray scale shade represents the axial effective velocity

and the vectors represent the transverse components of the effective velocity. The

blade cavitation pattern, shown in Figure 4.16, has been obtained for a cavitation

number,�n = 1:6.

The unsteady thrust coefficients clearly show the influence of the nine bladed

stator and a corresponding number of peaks are observed (Figure 4.17). The ninth

harmonic dominates the axial force and torque, as shown in Figure 4.18.
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Figure 4.18: Thrust and Torque Harmonics for propeller DTMB 4497 (a) before and
(b) after cavitation.
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The stator blade also experiences cavitation in the presence of the effective

inflow upstream of the stator, as shown in Figure 4.19 (a), modified due to the action

of the rotor. The cavitation developed on the blade (at0o position) is primarily mid-

chord cavitation, and is shown in Figure 4.19 (b).

4.3 Podded Propulsors

Podded propulsors are gaining wide acceptance in commercial ships. The podded

propulsor has a higher propulsive efficiency and enables higher maneuverability.

Besides these reasons, podded propulsors can lead to an increase in cargo and pas-

senger space and also offer the added advantage of being able to be installed late in

the ship building process.

A typical, though simplified, pod geometry is shown in Figure 4.20. As the

pod geometry (including the strut) is non-axisymmetric, the axisymmetric version

of GBFLOW cannot be used and instead the three-dimensional version is used iter-

atively with MPUF-3A.

GBFLOW-3D allows the user to provide a two-dimensional grid, which

when rotated circumferentially gives a three-dimensional grid. This option requires

that the geometry be axisymmetric. The other option is that the user generates an

entirely three-dimensional grid. The latter option is used to generate the grid for a

podded propulsor. The grid is cylindrical around the geometry and non-cylindrical

beyond a specified radius. Figure 4.21 shows half of the domain used to model the

geometry as well as a magnified view of the cell distribution near the pod. The cells

are concentrated near the geometry and their size increases linearly far upstream and

downstream.
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Figure 4.20: Podded propeller geometry

The hub radius for a podded propeller is no longer constant and the blade

needs to follow the pod geometry. Therefore, MPUF-3A is modified to handle blades

fitted within a specified hub and/or duct geometry. This is done by finding the inter-

section of the propeller blade with the duct/hub and re-paneling the modified blade

geometry, keeping the number of panels the same. Also, the image method is mod-

ified to include the effect of the varying hub radius (details of scheme can be found

in [Kinnas 2002]).

4.3.1 Results for Podded Propulsors

This section describes the results obtained from an iterative run between MPUF-3A

and GBFLOW-3D for a push-type podded propulsor geometry. The solution requires

7 such iterations for the convergence of the axial force. This requires a CPU time of

13 hours on a Compaq Professional Workstation XP1000.

The effective inflow to the propeller, determined at an upstream axial loca-
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Figure 4.21: Three-dimensional grid used to model the podded propeller

tion, clearly shows the effect of the strut. The presence of the strut causes a decrease

in the axial velocity (see Figure 4.22 (a)). In Figure 4.22 (b), the contour plot of the

propeller induced velocity shows the influence of the four blades. Figures 4.23 and

4.24 show the axial velocity and pressure contours at the center plane of the grid,

respectively. The expected acceleration and the pressure jump is seen across the pro-

peller plane (located atXp = 1:34). The integration of pressure on the pod geometry

gives the axial force developed in the presence of the propeller. This is particularly

useful to capture the beneficial effects of a strut located aft of the propeller. Figure

4.25 shows the convergence of the circulation distribution with number of iterations

as well as the convergence of the axial force on the pod.

4.3.2 Various Podded Propulsor Configurations

In this section, results are presented for various possible podded propulsor config-

urations. These include the pull-type pod (where the propeller is located forward

of the strut), the push-type pod (where the propeller is located aft of the strut, as
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Figure 4.22: (a) Effective velocity and (b) Propeller induced velocity at an axial
plane upstream of a push-type podded propeller
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was shown in the previous section) and pod fitted with a pair of contra-rotating pro-

pellers. The results from these cases are compared to a case with the propeller absent

i.e. the pod geometry placed in uniform open flow.

Figure 4.26 shows the axial velocity contours and total velocity vectors for

the four configurations considered. The propeller location is shown by the variable

Xp. In Figure 4.26 (a), as the propeller is absent the flow remains unaltered in most

of the domain, though the presence of the pod alters the flow to some extent. For

the push-type pod, an acceleration is observed aft of the propeller. Flow upstream

of the propeller is unaffected (see Figure 4.26 (b)). In Figure 4.26 (c), the propeller

is located upstream of the strut and the entire pod sees an accelerated flow. This

effect is more pronounced for the contra-rotating pair due to the presence of two

propellers.

Figure 4.27 shows the pressure contours for the different configurations. The

pressure jump is observed across the propeller plane. Figure 4.28 shows the tangen-

tial velocity contours for the contra-rotating podded propulsor. Along the strut, the

tangential velocity varies from positive to negative due to the changing slope of the

strut section.

Figure 4.29 compares the total axial force acting on the strut for the four

different configurations. As expected the force on the strut in the absence of the

propeller converges to a value close to zero. The force on the strut is highest for

the push-type pod and decreases for the contra-rotating pod and is lowest for the

pull-type pod. The presence of the strut downstream of the propeller aids the thrust

(similar to a post-swirl stator), and this is seen by the negative force acting on the

strut (negative drag� thrust).
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Figure 4.26: Axial velocity contours and velocity vectors for four different podded
propulsor configurations (a) No propeller (b) Push-type podded propulsor (c) Pull-
type podded propulsor (d) Contra-rotating podded propulsor
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Figure 4.27: Pressure contours and velocity vectors for four different podded propul-
sor configurations (a) No propeller (b) Push-type podded propulsor (c) Pull-type
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4.3.3 Comparison with Experimental Results

The coupled approach developed has been used for various simplified podded propul-

sor configurations. In order to validate the approach completely, it is essential to

compare the method by applying it to a realistic geometry for which experimental

data is available. One such experiment was performed by [Szantyr 2002]. A com-

parison to this work has been recently presented in [Hsin et al. 2002], where the

flow past a podded propulsor has been calculated using both the boundary element

method and a coupled viscous/potential flow code.

Geometry Details

The details of the experimental setup can be found in [Szantyr 2002]. Results for

three different configurations, namely a single pull-type propeller, a single push-

type propeller and a twin propeller system have been documented. The experiments

were performed in the cavitation tunnel of the Technical University of Gdansk and
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the longitudinal and transverse components of the resultant hydrodynamic forces

were measured for different advance coefficients and drift angle values. In order to

validate the present method the single pull-type propeller case is considered, because

apart from the experimental results, numerical results from [Hsin et al. 2002] are also

available for the same configuration.

The principal dimensions of the pod are presented below.

� Length of pod propulsor model:16:22in: (0:412m)

� Maximum pod diameter:2:91in: (074m)

� Length of vertical strut:5:51in: (0:140m)

� Chord of strut:4:29in: (0:109m)

� Thickness of strut:1:85in: (0:047m)

The propeller used was a modified KCA 110, chosen from the series pre-

sented by [Gawn and Burrill 1957]. The propeller geometry was modified for a

higher hub radius and the ratioA=Ao = 0:8 was maintained. The details of the

propeller are presented below.

� Propeller KCA 110 (modified) Gawn-Burrill series

� Propeller diameter:7:166in: (0:182m)

� Hub diameter:2:52in: (0:064m)

� Number of blades: 3

� Blade area ratioA=Ao = 0:8
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� Pitch of pull-type propeller (radially constant)P=D: 0.8

All dimensions are made non-dimensional with the propeller radius.

Results

First, the values of the thrust and torque coefficients for a range of advance coeffi-

cient values are compared to experimental data for theunmodifiedpropeller geom-

etry. These are open water results that are obtained in the absence of the pod, for a

given uniform inflow. Figure 4.30 shows the comparison. As can be seen from the

figure, the values ofKT andKQ compare well with the experimental results, except

for the low values ofJs = 0:5 andJs = 0:6.

The numerical results for a single pull-type propeller placed in zero drift

angle are compared to experimental results as well as results from [Hsin, 2002]. The

longitudinal force acting on the pod is compared for three different values of the

advance coefficient,Js. The friction effect is included by obtaining the frictional

force using the friction coefficient described below.

CF =
0:075

(log10Re� 2)2
(4.19)

whereCF is the friction coefficient, made non-dimensional by1
2
�U2S; S is the

surface area of the pod;U is the flow velocity;� is the fluid density. For a given

value of the advance coefficient, the Reynolds number and therefore the friction

coefficient can be determined. The friction coefficient when multiplied by the area

of the pod gives the non-dimensional friction force, which is added to the result

from the Euler solver. Figure 4.31 shows a comparison of the axial force obtained

using the present method, results from [Hsin et al. 2002] and data from [Szantyr
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2002]. The values obtained from the present method compare well with values from

[Hsin et al. 2002], and both the numerical results under predict compared to the

experimental data.
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Chapter 5

FPSO Hull Motions: Heave and Roll

This chapter discusses the application of the two-dimensional unsteady Euler solver

to the problem of a two-dimensional body moving at the free surface of a fluid. The

motivation for studying the two-dimensional problem is to perform a rigorous treat-

ment of the interaction between a body and a fluid with a free surface. Results of

in-depth validation tests and convergence studies are presented in the first section.

Next, the solver is applied to the problem of a flat plate placed normal to an oscil-

lating flow and the results obtained are compared to experimental results presented

in [Sarpkaya and O’Keefe 1995]. Finally, the results for the two-dimensional FPSO

hull undergoing heave and roll motions are presented. A detailed study on the ef-

fect of the presence of the bilge keels, the bilge keel depth (as a fraction of the ship

beam) and the effect of varying the forcing function is performed.

5.1 Validation Tests

Unlike work presented in Chapter 4, where most of the results were obtained by

modifying and extending past work ([Choi 2000],[Kinnas et al. 1998]), the method

presented in this chapter needs to be sufficiently validated before applying it to the

intended problem.

The underlying principle behind all the tests described in the next few sec-
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tions is their simplicity. Specific problems, for which the analytical results are

known or can be easily determined, have been chosen as benchmarks. Besides vali-

dating the method, going through this process also provides a clearer understanding

of the intricacies of the numerical scheme and this insight was useful when working

on the hull motion problem.

5.1.1 Checkerboard Pressure Distribution

The first such test described is the checkerboard distribution. Certain numerical

schemes allow a checkerboard pressure distribution (1 and 0 on adjoining grid points)

to propagate, thus leading to a result which satisfies the numerical scheme but is en-

tirely erroneous. An initial checkerboard distribution is applied to a rectangular grid

(50� 30 cells) in the presence of a uniformx-direction flow. The initial pressure is

specified at all the nodes aspi;j = mod(i; 2) � mod(j; 2), wherei andj are the

x- andy-direction indices, respectively. This results in an initial pressure distribu-

tion, as shown in Figure 5.1, such that the pressure is ’1’ at all nodes with even ’i’

and ’j’ values and zero on all other grid points. The solution is allowed to develop

and the converged results are studied to check if the error has been propagated over

subsequent time steps.

Boundary Conditions

Before going into the results, it would be worthwhile to explain the boundary con-

ditions specified at the four boundaries of the grid. In any numerical problem, the

solution is as good and accurate as the boundary conditions specified. The condi-

tions are summarized below:

� Inlet: A uniform x-direction velocity was specified on the nodes along the
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left boundary of the rectangular domain. Both pressure and they-direction

velocity are specified as zero. Specifying the pressure at one of the bound-

aries provides a reference pressure relative to which the pressure values on the

other boundaries and within the domain are obtained. These conditions are

expressed in Equation 5.1.

u = 1; v; p = 0 (5.1)

� Outlet: The first derivatives of the three variables are specified to be zero on

the right hand side boundary of the rectangular domain (Equation 5.2).

@(p; u; v)

@x
= 0 (5.2)

If uni;j represents the value of thex-direction velocity at the outlet boundary,

anduni�1;j the value of the variable on the node next to the boundary, then

from the finite difference formula for the first derivative we have:

@u

@x
=

uni;j � uni�1;j
xni;j � xni�1;j

(5.3)

Applying the condition of the derivative being equal to zero, this reduces to

uni;j = uni�1;j (5.4)

Thus by having collocated variables (having the variables unknown at the grid

points), the application of boundary conditions becomes easier.
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� Top: The top boundary condition is the same as specified at the inlet boundary.

u = 1; v; p = 0 (5.5)

� Bottom: At the bottom boundary, they-direction velocity (v) is specified as

zero, while the first derivatives of pressure and thex-direction velocity (u)

with respect toy are specified as zero.

@(p; u)

@y
= 0; v = 0 (5.6)

Numerically, this is treated in a similar fashion as described for the outlet

boundary condition.

� Checkerboard pressure distribution (at t=0): Initially, the pressure distribution

is specified as given in Equation 5.7.

pi;j = mod(i; 2)� mod(j; 2) (5.7)

where i and j are thex- and y-direction indices. This results in an initial

pressure distribution such that the pressure is ’1’ at all nodes with even ’i’ and

’j’ values and zero on all other grid points.

Results

The initial checkerboard distribution specified is shown in Figure 5.1. As is seen

from the figure, the pressure is one at alternate grid points and zero in between. Fig-

ure 5.2 shows the convergence history for the above run. The solution converges

when the difference in the values of all the variables between two successive iter-

ations falls below a prescribed limit. The converged solution is shown in Figure
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Figure 5.1: Initial checkerboard distribution specified on the rectangular domain

5.3. As is expected from a correct numerical scheme, the initial checkerboard dis-

tribution is replaced by a uniform pressure distribution, as should be the case for a

uniform flow-field.

5.1.2 Oscillating Flow in a Rectangular Domain

Next the solver is applied to a problem for which the analytical result is known. The

problem can be defined as follows. Consider a rectangular domain. A sinusoidal

axial velocity (u = Uosin(!t)) is specified at the four boundaries of the domain.

For this situation, the momentum equation in thex-direction reduces to

@u

@t
= � @p

@x
(5.8)
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Boundary and Run conditions

The boundary and run conditions for the above problem are described below. A

rectangular grid with 120� 60 cells (domain:�6 � x � 6; 0 � y � 6) is used. A

time step,�t = 0:001 sec is used with 100000 of time steps, giving a total run time

of 100 seconds.

� On all four boundaries a sinusoidalx-direction velocity is specified, i.e.u =

Uosin(!t) on all boundaries, whereUo = 1:0 is the velocity amplitude,T =

8secs is the time period and! = 2�
T

is the corresponding frequency.

� Upstream and Downstream: On these boundaries, the second derivative of

pressure with respect tox is specified as zero. Also the vertical velocity is

zero on these boundaries.

@2p

@x2
= 0; v = 0 (5.9)

In order to numerically implement the pressure boundary condition, we once

again resort to the known finite difference formula for the second derivative.

This is given in Equation 5.10 for any point (ni; j) on the downstream bound-

ary and for a uniform grid (spacing�x).

@2p

@x2
=

pni;j + pni�2;j � 2pni�1;j
(�x)2

(5.10)

Applying the condition of the derivative being equal to zero, this reduces to a

simple extrapolation expression:

pni;j = 2pni�1;j � pni�2;j (5.11)
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The pressure at the boundary can thus be easily determined in terms of known

pressures in the interior of the domain. It can be seen that this is the only

boundary condition that will work for this problem. As we expect to see a

pressure gradient (@p
@x

) in thex-direction, specifying the pressure or a zero first

derivative on the vertical boundaries would result in a divergent result.

� Top and Bottom: At the top and bottom boundaries,v velocity is explicitly

specified as zero, while the first derivative of pressure with respect toy is

taken to be zero. This also is also evident from the nature of the problem.

As we do not expect to see any variation in pressure in they-direction, this

implies that the derivative of pressure with respect toy should be zero. These

conditions are summarized in Equation 5.12.

@p

@y
= 0; v = 0 (5.12)

Results

The solution is allowed to develop and the resulting pressure gradient is compared

with the expected analytical value of the acceleration (@u
@t

= Uo!cos(!t)), according

to Equation 5.8. The numerical and the analytical values for the pressure gradient

are presented in Table 5.1, and show an excellent correspondence. The Table also

shows the % error observed in the vertical,v, velocity. Figures 5.4 and 5.5 shows

the pressure contours obtained for two different time instants, separated by half a

time period. The complete reversal of the pressure distribution corresponds with the

change in the direction of theu velocity.
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Time (sec) @u
@t

� @p

@x
Error inv velocity

t=0 0.785398 0.78586667 0.06 %
t=T/4 -0.0493 -0.0491754 0.002 %
t=T/2 -0.785398 -0.78588750 0.06 %

Table 5.1: Comparison of the analytical and numerical values of� @p

@x
for the oscil-

lating flow problem

P
4.2
3.78
3.36
2.94
2.52
2.1
1.68
1.26
0.84
0.42
0

-0.42
-0.84
-1.26
-1.68
-2.1
-2.52
-2.94
-3.36
-3.78
-4.2

Pressure Contours for time=88.0 secs

Figure 5.4: Pressure contours att = 0 secs, for the oscillating flow problem

90



P
4.2
3.78
3.36
2.94
2.52
2.1
1.68
1.26
0.84
0.42
0

-0.42
-0.84
-1.26
-1.68
-2.1
-2.52
-2.94
-3.36
-3.78
-4.2

Pressure Contours for time=92.0 secs

Figure 5.5: Pressure contours att = T
2

secs, for the oscillating flow problem

’F=ma’ check

In order to validate the numerical integration scheme, the force acting on the square

body is determined by two approaches (grid shown in Figure 5.6). The run condi-

tions are same as that described in Section 5.1.2. Firstly, the force is determined by

integrating the pressure on the vertical sides of the square. This is compared with

the expected value of force obtained as a product of the mass and acceleration. The

mass of the square is simply the area of the body, for a unit density and depth. The

acceleration is known as the first derivative of the sinusoidally varying velocity. A

comparison of the forces obtained by the two approaches is shown in Figure 5.7. As

seen in the plot, the pressure integration scheme gives an accurate estimate of the

actual force.
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Transparent square located in the center
of the domain

Figure 5.6: Rectangular grid, with transparent square boundary outlined, used to
verify the numerical pressure integration scheme
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Force (pressure integration)
Mass x acceleration

Figure 5.7: Comparison of forces determined by the pressure integration technique
and theF = ma approach
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5.1.3 Oscillating Flow over a Circular Bump

Another problem that was used to validate the method developed was that of a circu-

lar cylinder subject to an oscillating flow. A semi-circular bump was used to model

half a cylinder, and was subject to a sinusoidal axial velocity. The nodal pressure

on the cylinder surface is integrated to determine the total axial force acting on the

body (the force on the full cylinder is twice this force). Knowing the variation of the

force over one time period, the least square approach can be used to determine the

added mass and drag coefficients (these are the unknown constants in the Morison’s

equation (see [Newman 1977])). A description of the run and boundary conditions

is provided below:

� Semi-circular cylinder with center at(x; y)=(0,0), Diameter = 1.0

� Domain size: -6� x � 6, 0� y � 6 (100� 60 cells)

� Boundary conditions:

– Upstream and Downstream:@(p;v)
@x

= 0; u = 0:1sin(!t)

– Bottom: @(u;p)
@y

= 0; v = 0

– Top: @(p;v)
@y

= 0; u = 0:1sin(!t)

– On the cylinder:@(u;p)
@n

= 0; q:n = 0

� �t = 0:01 sec, Number of time steps = 10000

Figure 5.8 shows the grid that was used for the computation. The pressure

on the bump surface is numerically integrated to obtain the force on the cylinder

surface. The added mass coefficient is then determined using the Morison’s Equation
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Figure 5.8: Rectangular grid with circular bump on bottom boundary

and least square approach. The determined inertia coefficient,Cm=2.063, while

the analytical inertia coefficient,Cm=2.0. Figure 5.9 shows the force acting on the

cylinder surface over one period of oscillation.

5.1.4 Numerical Wavemaker

Surface-waves, arising due to a moving body located at the free surface of a fluid, are

one of the components responsible for providing damping. Therefore, it is important

to ensure that the a surface-wave profile can be captured by the solver. It is important

to note here that, though a surface-wave profile is seen at the free surface, the top

boundary of the computational domain is not a moving boundary. The wave profile

can be visualized by studying the velocity vectors at the free surface or by computing

and plotting the wave elevation.
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-0.005

0

0.005
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0.015
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Variation of force over one time period

Figure 5.9: Axial force, over one time period, on the surface of a circular bump
subject to an oscillating flow
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The waves are assumed to be governed by linear wave theory, and the ana-

lytical expressions for the particle velocity components and the pressure below the

free surface are shown below:

u = a!ekzcos� (5.13)

v = a!ekzsin� (5.14)

p = �g(�ekz � z) (5.15)

whereu; v andp are the horizontal velocity component, vertical velocity component

and the pressure respectively. In the above expressions,a is the amplitude of the

wave;! is the angular frequency, which is related to the time periodT by ! = 2�
T

;

k is the wave number related to the wavelengthLo ask = 2�
Lo

; and� = kx�!t; x is

the horizontal coordinate andz the vertical coordinate (z = 0 on the free surface);

t is the time;� is the density of the fluid and�, the wave elevation is a function

of bothx andt and is related to them as� = acos�. It should be noted here that

though all the formulation has been expressed in terms of the vertical coordinatey,

z is the usual notation used to denote the vertical coordinate in wave theory. From

our definitions, we havez = �d wheny = 0.

As is evident from the above equations, for negativez, the velocity compo-

nents die down exponentially. Also, for deep water (d
Lo
� 0:5), the particles move

in circular paths with radiusro = aekz.

A rectangular domain (2 � 1; 100 � 50 cells) is used for the computation.

The velocities and pressure are specified explicitly, using Equation 5.13 at the inflow

boundary. Knowing the analytical expressions foru; v andp, their derivatives with

respect tox can be determined. At the outflow boundary, the derivatives are specified
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equal to the analytical values. The velocities are assumed to be zero at the bottom

boundary and the pressure at the bottom is extrapolated from the inner nodes.

The boundary condition on the free surface is described in detail in the sec-

tion below.

Free surface boundary condition

Two conditions need to be satisfied at the free surface boundary. Firstly, the

velocities of the free surface and fluid particles are equal. This condition is known as

theKinematic Boundary Condition[Newman 1977] and can be expressed as shown

in Equation 5.16. In the equation,� refers to the wave elevation. Another condition

that needs to be satisfied is that pressure is equal to atmospheric pressure at the free

surface. This is known as theDynamic Boundary condition[Newman 1977] and

is shown in Equation 5.17 (with� being the velocity potential). These represent

the linearized free surface boundary conditions in the most general form, and are

applicable under the assumptions that higher order terms and the surface tension are

ignored.

v =
@�

@t
(5.16)

�
@�

@t
+ �g� = 0 (5.17)

Solving the Euler equations using the Finite Volume Method requires that

boundary conditions be specified for the three variables i.e.u; v and p at each

boundary. Conditions foru; v andp at the free surface are obtained by manipulating

the above described equations.
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Differentiating the DBC once with respect to time and applying the KBC,

we obtain the following equation:

@2�

@t2
+ gv = 0 (5.18)

Differentiating the above equation further with respect toy, we get:

@2

@t2
(
@�

@y
) + �g

@v

@y
= 0 (5.19)

Using the definition thatv = @�

@y
, and exploiting the fact that for a wave, the velocity

v is of the formv = Aei!t (whereA is a parameter independent of time and! is the

frequency of the wave), we obtain the final form of the boundary condition for the

vertical velocity at the free surface:

@v

@y
=

!2

g
v (5.20)

This gives us a mixed-type boundary condition for the first derivative ofv in terms

of the wave frequency (!). The unknown velocity is present on both sides of the

equation, i.e. in the backward difference approximation of the first derivative as

well as explicitly on the right hand side.

Similarly, we can obtain the following condition for the first derivative ofu

velocity with respect toy.

@u

@y
=

!2

g
u (5.21)
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In order to get a boundary condition for pressure, we start with the fact that

the pressure at the free surface is zero. Pressure at a depthz would bep = pStatic +

�gz. For z = �, we getp = �g�. From linear theory, for a small values of�, this

condition can be applied atz = 0. Therefore, atz = 01, we have:

p = �g� (5.22)

Differentiating the above equation with respect to time, we have:

@p

@t
= �gv (5.23)

Therefore knowing the vertical velocity and pressure at a previous time step, the

pressure at the next time step can be determined.

In the problem, the wavelength of the wave,Lo, is the characteristic length;

the time periodT is the characteristic time; and the wave velocity,c given by

c = Lo
T

=
q

gLo
2�

is the characteristic velocity. The Euler equations as well as the

boundary conditions are made non-dimensional with respect to these references.

Solution

Figure 5.10 shows the velocity distribution at the free surface. It is confirmed that

a wavelength of 1.0 non-dimensional units is obtained (as the wavelength,Lo is

used to non-dimensionalize the Euler equations). Figure 5.11 shows the exponential

decay of the velocity with depth.

1This can be verified by using the expression for the pressure under a wave,p = �g(�ekz � z),
wherek is the wave number. Forz = 0, this reduces to the above form
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t = 0
Wave profile and Axial velocity contours

Lo=1.0

Figure 5.10: Free surface velocity distribution obtained using the numerical wave-
maker

5.1.5 2D Straight Channel flow: Comparison with FLUENT

The 2D straight channel flow problem is used in order to validate the unsteady vis-

cous solver developed. This is known as the pressure driven Couette Flow problem.

Flow through a straight 2D channel is considered, with a uniform inflow specified at

the inlet. For the problem,L=H = 5, whereL is the length of the channel andH is

the channel height. The Reynolds number is defined in terms of the inflow velocity

and the height of the channel (Re =
UInflowH

�
). The results presented here are for a

run withRe = 100.

The boundary conditions applied on the four boundaries are summarized

below.
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t = 0
Decay of velocity with depth

u ~10-2

v ~10-4

at depth = Lo/2

Figure 5.11: Decay of velocity with depth

� Inlet: At the inlet, the inflow is specified as a uniformx-direction velocity2

The same boundary condition is applied in FLUENT, and a consistency is

maintained. The vertical velocity is specified as zero at the inlet, and the

pressure is obtained from the inner nodes.

@2p

@x2
= 0; v = 0 (5.24)

� Outlet: Both the velocity components are obtained from the inner nodes. The

condition of the first derivative with respect tox being zero implies that the

2This can lead to some convergence problems, and a better approximation would be to specify a
parabolic velocity profile (fully developed flow through a pipe, see [Panton 1996]). This problem is
overcome by having finer grid spacing close to the entrance.
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flow profile is no longer changing in thex- direction, which is true for a long

channel. A reference pressure (p = 0) is also specified.

@u

@x
= 0;

@v

@x
= 0; p = 0 (5.25)

� Walls: The pressure on the walls is determined from the inner nodes. The first

derivative is treated in the same manner as shown in Equation 5.3. A no slip

condition is specified at the wall boundaries as a Navier-Stokes solver is being

used.
@p

@y
= 0; u; v = 0 (5.26)

The results from the unsteady Navier-Stokes solver are compared to those

from NS2D, a steady 2D Navier-Stokes solver (as this is essentially a steady prob-

lem, we obtain the steady-state solution by allowing the unsteady solver run for a

sufficient period of time) and unsteady results from FLUENT (a commercial CFD

code). The FLUENT run conditions are summarized below:

� 2D, unsteady, 1st order implicit in time, SIMPLE

� �t = 0:1; 100 time steps

� Re=100

The grid used in the problem is shown in Figure 5.12. Finer cells are used

near the inlet as ideally a parabolic profile needs to be specified at the inlet (while a

uniform inflow is actually specified).

The converged solution obtained from the unsteady Navier-Stokes solver is

shown in Figure 5.13. As is seen from the velocity vectors, a parabolic profile is

103



�p
L Analytical

�p
L Computational

0.02 (forRe=100 0.0204322

Table 5.2: Comparison of the analytical and computed values of�p
L

for the 2-D
channel flow problem

obtained at the outlet. This means that the channel is long enough for the flow to

fully develop. In Figure 5.14 and 5.15, the axial velocity profile at the boundary and

the pressure at the bottom wall as obtained from the three methods are compared.

These match very well for the three solvers.

Another check that is performed is comparing�p
L Analytical

with �p
L Numerical

.

In fully developed Couette flow, the pressure gradient is constant and is related to the

mass flow rate,Q, by the Equation 5.27 (refer [Panton 1996] for derivation). In this

problem a parabolic profileu(y) = y � y2 is specified at the inflow. The flow rate,

Q can be determined by integrating the velocity over the height (Q =
R 1
0 u(y)dy).

KnowingQ andRe, the analytical value of�p
L

can be determined. The analytical

and computed values are compared in Table 5.2. These values match very well.

Q =
Re

12

�p

L
(5.27)

5.2 Convergence Studies

Convergence studies are performed for the developed numerical scheme. The two

important parameters in this problem are cell size and time step size. These tests

help in ascertaining appropriate values of various parameters, i.e. parameter values

which give the expected level of accuracy for minimum run time. The convergence
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Grid used for 2D straight channel problem
(50x20 cells)

Non-uniform cell spacing near the inlet

Figure 5.12: Grid used for the 2D straight channel problem (50� 20 cells)

P: 0 1 2 3 4 5

NS Solver, Unsteady, Re=100

σ4=1.0, 50x20 cells (non-uniform)
∆t=0.001, 20000 timesteps
L/H=5

u=1
v=0
∂2p/∂x2=0

u=0
v=0
∂p/∂y = 0

∂u/∂x=0
∂v/∂x=0
p=0

Inlet

Top and Bottom walls

Outlet

Figure 5.13: Converged solution for the 2-D channel problem obtained using the
unsteady N-S solver
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0.6
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1

FLUENT
NS Solver, Unsteady, 50x20
NS Solver, Steady, 50x20

Axial Velocity Profile at Outlet

Figure 5.14: Comparison of 2D channel outlet velocity profile for three different
methods - the steady N-S solver, the unsteady N-S solver and FLUENT

studies are performed using the oscillating flow problem as described in Section

5.1.2.

5.2.1 Convergence with�t

In order to study the convergence with�t, all other parameters are kept fixed and

the value of�t is varied. The convergence study is performed using a rectangular

domain (120� 60 cells). The total time for the run is kept fixed as 100T . For�t =

0:01, this would mean 10000 iterations while for�t = 0:001, 100000 iterations.
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Pressure Distribution on the bottom wall
Re = 100

Figure 5.15: Comparison of 2D channel bottom pressure for three different methods
- the steady N-S solver, the unsteady N-S solver and FLUENT

The value of the partial derivative of the pressure with respect tox is compared for

time t = 88T seconds (see Table 5.3). It should be noted that for the specified time

instant, the expected value of@u
@t

= 0:785398.

5.2.2 Convergence with Number of Cells

A similar convergence study is performed for the number of computational cells.

For this study,�t is kept fixed as 0.001 and a comparison of the� @p

@x
is shown in

Table 5.4.
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�t � @p

@x
Error inv velocity

0.01 0.80113 12 %
0.001 0.785052 0.0017 %

Table 5.3: Convergence of computed values of� @p

@x
and the error inv velocity for

different values of�t

Number of cells � @p

@x
Error inv velocity

60x30 0.78324 0.00015 %
60x30 (uniform) 0.7791 0.09 %

120x60 0.785052 0.0017 %

Table 5.4: Convergence of computed values of� @p

@x
and the error inv velocity for

different grid sizes

5.3 Flow past a Flat Plate

This section discusses the use of the developed two-dimensional unsteady Euler

solver to model the oscillating flow past a flat plate. Modeling of the separated

flow past the flat plate would provide a simplified visualization of separated flow

past bilge keels. The strongly separated flow past bilge keels results in improved

mitigation of the roll motions. Yeung, in [Yeung et al. 2000], concludes that the

viscous shear stress is found to be of secondary importance in strongly separated

flow and the pressure force dominates.

The results are obtained for different values of the Keulegan-Carpenter num-

ber. The drag and inertia coefficient values are compared to those presented in

[Sarpkaya and O’Keefe 1995]. For a Keulegan-Carpenter number of 1.0, the Eu-

ler equation results are compared to the Navier Stokes solver results. Comparison of

results from the viscous solver with those from an Euler solver would help quantify

108



the error introduced by using an inviscid solver to model the separated flow.

5.3.1 Oscillating Flow past a Flat Plate

In order to analyze the flow past a flat plate, an oscillating flow is specified and the

separated flow that develops is studied. A domain size of 0� x � 12, 0� y � 6

with 120x60 uniform cells and�t = 0:001 sec is used for this run. The flat plate

is taken to be one computational cell thick and the height of the plate is taken to be

the reference length used to non-dimensionalize the equations. The grid used and

the boundaries are described in Figure 5.16. The domain boundary conditions are

summarized below:

� Upstream and Downstream boundaries: A sinusoidalx-direction velocity is

specified at the left and right boundary of the domain. The second derivative

of pressure and the first derivative of they-direction velocity are specified to

be zero i.e the values of these variables on the boundary are obtained from the

inner nodes.

u = � Umcos(!t);
@v

@x
= 0;

@2p

@x2
= 0 (5.28)

� Top boundary: On the top boundary of the domain, the first derivative of p

with respect toy is specified to be zero. In other words, the value of the

pressure on the boundary is the same as the pressure value on the inner node.

The vertical velocity is specified as zero and the horizontal velocity as the

sinusoidal function.

@p

@y
= 0; u = � Umcos(!t); v = 0 (5.29)
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� Bottom boundary: The symmetry boundary condition is applied on the bottom

boundary, with the first derivative of theu velocity with respect toy taken to be

zero and the vertical velocity specified as zero. The first derivative of pressure

with respect toy is taken to be zero.

@u

@y
= 0;

@p

@y
= 0; v = 0 (5.30)

� On the plate: Applying the Kinematic boundary condition on the plate surface,

we get the boundary conditions shown below. In the Euler solver, the free-slip

condition is applied i.e. only flow parallel to the plate is allowed (that is the

vertical velocity) while the velocity component normal to the plate (u veloc-

ity) is specified as zero. On the other hand, for the Navier-Stokes solver, the

no-slip boundary condition is applied. This requires that both velocity com-

ponents are zero on the nodes on the plate surface. The pressure on the disk

is obtained by extrapolating from two adjoining nodes. For the nodes repre-

senting the tip of the plate, the pressure is taken as the average of the pressure

obtained from extrapolating the pressure from the two adjoining nodes in the

x- andy-directions.

– Euler solver - free-slip boundary condition

u; @v
@x

= 0; @2p

@x2
= 0

– Navier-Stokes solver - no-slip boundary condition

u; v = 0; @2p

@x2
= 0
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GRID FOR OSCILLATING FLOW PAST A FLAT PLATE

Top

Bottom

Inflow
Outflow

Plate

Direction of oscillating flow

Length scale :

Plate height ’h’

Figure 5.16: Oscillating flow past a flat plate: grid used and boundary definitions
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5.3.2 Determination of the Drag and Inertia Coefficients

The force exerted on a plate can be expressed by the Morison’s equation as follows

[Sarpkaya and O’Keefe 1995]:

2F

�hwU2
m

= � Cdjcos�jcos� + Cm

�2

K
sin� (5.31)

where F is the force acting on the plate;� is the density of the fluid;h, the height of

the plate;w, the width of the plate;Um the amplitude of the oscillating fluid velocity

characterized byU = �Umcos�; � = 2�t
T

whereT is the period of oscillation; and

Cd andCm, the Fourier-averaged drag and inertia coefficients given by

Cd = � 3

4

Z 2�

0

F (�)cos�

�hwU2
m

d� (5.32)

Cm = � 2K

�3

Z 2�

0

F (�)sin�

�hwU2
m

d� (5.33)

The coefficients for the plate held normal to the flow depend on the Keulegan-

Carpenter number,K = UmT
h

and the Reynolds number,Re = Umh
�

.

In order to compare results with [Sarpkaya and O’Keefe 1995], the flat

plate is assumed to be two-dimensional i.e.w = 1. Using h as the reference

length,Um as the velocity scale and time periodT as the time scale, we obtain

non-dimensionalized Euler equations similar to Equation 3.4:

1

K

@~U

@t
+
@ ~F

@x
+
@ ~G

@y
= ~Q (5.34)

where the column matrices are defined same as in Equation 3.5 andK is the Keulegan-

Carpenter number.
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Equations 5.32 and 5.33 above can also be written in the non-dimensional

form:

Cd = � 3

4

Z 2�

0
F̂ (�)cos�d� (5.35)

Cm = � 2K

�3

Z 2�

0
F̂ (�)sin�d� (5.36)

whereF̂ (�) is the non-dimensional force function over one time period. The force

can be obtained by numerically integrating the pressure on the plate. As�t used in

the problem is small (�t = 0:001) the drag and inertia coefficients can be estimated

using the trapezoidal rule.

Solution

The solution obtained using both the unsteady Euler and unsteady version of NS2D

is presented in this section. The same grid and run conditions are used for both

the solvers. The Navier-Stokes solver differs only in terms of the body boundary

conditions (as described in the previous section) and the need to specify a Reynolds

number. In order to obtain results consistent with the experiment performed by

[Sarpkaya and O’Keefe 1995], a Reynolds number ofRe = 1035 is used. The com-

parison between the two approaches is performed for a Keulegan-Carpenter num-

ber,K = 1:0. Figures 5.17 and 5.18 show thex-direction velocity contours and

the streamlines. It is observed that the Navier-Stokes solver predicts tighter vortices

being shed. This shed vortex pattern can be compared with Figure 3a in [Sarpkaya

and O’Keefe 1995]. A pair of counter-rotating vortices is formed and this convects

away in the diagonal direction, either to the left or the right side of the plate. A

more important outcome is the comparison of forces predicted by the two solvers.

113



As is seen in Figure 5.19, the force history predicted by both solvers is comparable,

except for a small phase difference. This difference is negligible when computing

the coefficients.

The drag and inertia coefficients can be computed from the force history (us-

ing Equations 5.35 and 5.36). These coefficients, obtained using the Euler solver for

a range of Keulegan-Carpenter numbers, are presented in Figures 5.20 and 5.21. A

direct comparison with results published by [Sarpkaya and O’Keefe 1995] is difficult

as in the paper, the coefficients are plotted on a log scale. For a Keulegan-Carpenter

number of 1.0, the present method givesCd = 13:7 andCm = 1:1 and the Navier-

Stokes solver givesCd = 14:6 andCm = 1:03. For the same Keulegan-Carpenter

number, [Sarpkaya and O’Keefe 1995] experimentally obtain values ofCd = 15:5

andCm = 1:1 (see Figures 1 and 2 in [Sarpkaya and O’Keefe 1995]. In general, it

can be seen that the values obtained and trends observed are comparable.

5.4 Motions of a Hull

This section provides a general background for the problem of a body undergoing

periodic motions at the free surface of a fluid. Flow is simulated past a rectan-

gular FPSO hull subjected to forced heaving and rolling at the free surface. The

draft of the hull is taken to be the reference length used to non-dimensionalize the

Euler equations. The hull is subjected to heave or roll motion by specifying an ap-

propriate sinusoidal exciting function and by requiring that the free-slip boundary

condition be satisfied. The amplitudes of motion are varied and the effect on the

hydrodynamic coefficients studied. The solution is considered assuming the flow is

two-dimensional. A large solution domain is considered in order to ensure that the

deep water condition is satisfied as well as to allow for the solution to develop fully.
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Figure 5.17: Axial velocity and streamlines predicted by the Euler solver (top) and
the Navier-Stokes solver (bottom) at time instantt = 0, for oscillating flow past a
flat plate
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Figure 5.18: Axial velocity and streamlines predicted by the Euler solver (top) and
the Navier-Stokes solver (bottom) at time instantt = T

4
, for oscillating flow past a

flat plate
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Figure 5.20: Drag coefficients obtained for the oscillating flow past a flat plate prob-
lem, for a range of Keulegan-Carpenter numbers, using an Euler solver (compare
with Figure 1 in [Sarpkaya, 1995])
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Figure 5.21: Inertia coefficients obtained for the oscillating flow past a flat plate
problem, for a range of Keulegan-Carpenter numbers, using an Euler solver (com-
pare with Figure 2 in [Sarpkaya, 1995])
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5.4.1 Assumptions

The problem of a body undergoing motions at the free surface of a fluid can be

complex and non-linear. In order to simplify the problem, certain assumptions need

to be made. The basic assumption is that the flow is incompressible and the fluid is

inviscid. Thus the flow is governed by the Euler equations.

In the present work, the motion of the hull is assumed known, while the

source of the excitation (for example incident waves) is neglected. Therefore, we

start of assuming that the hull is in continuous motion, with no decay in the ampli-

tude of motion and the source of this motion is unimportant. This enables simplifi-

cation in modeling of the problem.

Linear wave theory requires that the waves have ”small” amplitudes and the

amplitudes of the resulting motion be also ”small”.

The linear approach is used to satisfy the body boundary condition on the

mean body position i.e. the body boundary condition is satisfied on the portion of

the hull under the mean water surface, instead of satisfying it on the exact wetted

portion of the hull as required by the non-linear approach.

Linearized conditions are assumed on the free surface. The linearized free

surface boundary condition is applied on the undisturbed mean water surface instead

of the incident wave surface.

The other assumptions are listed below:

� The vessel speed is assumed to be zero.

� Infinite water depth is assumed.

� Uncoupled roll and heave motions are considered.
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Figure 5.22: Description of boundary conditions on a hull moving at the free surface

� Computations have been done for the radiation problem with a free surface

piercing body only.

� The roll axis is at the design waterline.

5.4.2 Coordinate system

The coordinate system used deviates from the typical system used in Naval Archi-

tecture (x positive towards the bow, y positive to the port). In this work, unless

otherwise stated, thex-axis is considered going to the right along the bottom bound-

ary of a rectangular domain. They-axis extends from bottom to top. The origin is
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located at the center of the domain, on the bottom boundary. Therefore, the grid and

the hull form is symmetrical about they-axis.

5.4.3 Grid and Geometry Details

A typical grid used for this problem is shown in Figure 5.23. The hull geometry

i.e. the beam, the draft, the bilge radius and later the length of the bilge keels, form

inputs for the grid generation program. It is also observed that the extent of the

domain should be larger than the wavelength expected for a given Froude number.

In non-dimensional units, the wavelengthLo =
2�

FnD
2 . For lower Froude numbers,

the wavelength obtained is significantly larger than the draft of the hull. Having a

grid with this extent is impractical as a large number of cells would be required to

capture the wave profile. The study is, therefore, limited to Froude number values

in the range0:4 � 2:0. These cover typical heave motion time periods observed in

the field. Another consideration is that the results presented in [Newman 1977] are

for deep-water. The extent of the grid in they-direction should be such as to always

satisfy the relation for deep-water, i.e.d
Lo
� 0:5.

Figure 5.24 shows details of the bilge keel. The non-dimensional bilge-keel

depth (non-dimensionalized by the beam,B, of the cross section),KD is varied and

the effect of the bilge-keel depth on the hydrodynamic coefficients is presented for

the roll motion. A constant bilge radius of0:02B is used for all the geometries

considered.

5.4.4 Hull Forces

For a body moving in an infinite ideal fluid, the hydrodynamic forces and moments

that develop can be expressed in terms of the added-mass coefficientsmij, where
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Figure 5.23: Grid used for studying the heave motion response for a rectangular hull
form
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Figure 5.24: Bilge keel geometry details
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both i andj refer to the six possible degrees of motion andmij is the added mass

due to motion in directionj, resulting from a force in directioni. Consider a body

undergoing small sinusoidal motions at the free surface. The six components of

force and moments can be expressed as follows:

Fi = Re
6X

j=1

�ei!tfij i = 1; 2; � � �6 (5.37)

where

fij = � �
Z
SB

Z @�i
@n

�jdS

is the complex force in the directioni, due to a sinusoidal motion of unit amplitude

in thej direction.

Fi can be alternatively be expressed in the form

Fi = �
6X

j=1

(aij _Uj + bijUj) (5.38)

which is a decomposition of the sinusoidal force, associated with each mode

of motion, into components in phase with the velocity and acceleration of the corre-

sponding modes.

The coefficientaij is known as theadded-mass coefficient, since it represents

the force component proportional to the acceleration. The coefficientbij gives the

force proportional to the body velocity; for this reason it is called thedamping coef-

ficient. The presence of such a force results from the generation of outward waves
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in the free surface, due to motions of the body. These two coefficients are dependent

on the the frequency of excitation.

The inviscid hull forces are obtained by integrating the pressure over the

mean portion of the hull under the undisturbed water line. Once the force variation

over one period is obtained, the least square approach can be used in order to solve

Equation 5.38 for a known excitationUj and _Uj and the added-mass and damping

coefficients can be determined.

5.4.5 Boundary Conditions

In order to accurately determine the force acting on the moving hull, it is essential to

specify correct boundary conditions at all the boundaries. The free surface bound-

ary conditions are applied as described in Section 5.1.4. The presence of the body

creates a discontinuity in the free surface and a different set of boundary conditions

need to be applied on the body. The velocity components are determined using the

free-slip condition (i.e. only the velocity component tangent to the surface is al-

lowed) and the kinematic boundary condition requiring that the normal component

of the body velocity be equal to the normal component of the fluid velocity. The

pressure on the body is extrapolated from internal nodes. The body velocity is spec-

ified by an appropriate sinusoidal function to describe heave and roll. For heave,

only the vertical velocity of the body is considered to exist, and is described as a

sinusoidal function with amplitudeqyo.

qy(t) = qyosin(!t) (5.39)

In order to describe roll motion, the roll angle is considered as a sinusoidal
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function.

�(t) = �osin(!t) (5.40)

The angular velocity _�(t) can be determined by differentiating the above

equation with respect to time. The tangential surface velocity is given by

qBODY = _�(t)� r (5.41)

wherer is the distance of the point on the surface from the center of rotation.

Free surface-body intersection

The intersection point of the free surface and the body requires special treatment

because of the drastic change in slope. The following conditions are applied at this

point:

� The vertical velocity,v, and the pressure,p are obtained by extrapolating from

two neighboring nodes on the free surface.

� Once the vertical velocity at the point is known, thex-direction velocity,u,

can be determined by applying the Kinematic Boundary Condition, which

requires that the velocity component normal to the body be zero.

5.5 Heave Motion

In this section, a heaving semi-circular hull form is considered first in order to en-

sure that the method can deal with body generated waves. Next, the hydrodynamic
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Figure 5.25: Grid used for studying the heave motion response for a semi-circular
hull form

coefficients, i.e. the added-mass and damping coefficients, are determined for a rect-

angular hull, with a Beam/Draft=2, undergoing heave motion. These are computed

for a range of Froude number values and the results obtained are compared with

those presented in [Newman 1977].

5.5.1 Semi-Circular Hull form

Figure 5.25 shows a grid with a semi-circular hull, with diameterD = 1:0, located

at the free surface. The equations are non-dimensionalized using the cylinder diam-

eter, time period of heave motion and a velocity defined asU� = D
T

as the reference

length, time and velocity respectively. On non-dimensionalization, the Froude num-

ber (FnD = !
q

D
g

) enters the equations and boundary conditions. This parameter
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can be varied to simulate a large range of heave time periods.

The boundary conditions have been discussed in previous sections and are

summarized below.

� Left and Right boundaries:

@(u; v; p)

@x
= 0 (5.42)

� Bottom boundary:

@2p

@y2
= 0; u; v = 0

� Free surface:

@u
@y

= !2

g
u

@v
@y

= !2

g
v

@p

@t
= �gv

� Hull Boundary: Heave motion specified asqy = qyosin!t

@2p

@n2
= 0; u; v determined by applying KBC

Results

For the case of a semi-circular hull, results are obtained for a Froude numberFnD =

1:5. The free surface velocity distribution and the pressure contours for four different

time instants are presented in Figure 5.26. It can be observed that the resulting
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Figure 5.26: Free surface velocity distribution and pressure contours at time instants
t = 0; T

4
; T

2
and 3T

4
, for a heaving semi-circular hull
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Figure 5.27: History of the vertical force acting on the semi-circular hull over one
time period

surface wave radiates outwards. It should be noted that this solution is obtained

from the solver without specifying an explicit radiation condition.

The force on the heaving hull is obtained by integrating the pressure on the

hull surface. In the case of pure heaving, only the vertical force is of interest to us.

This is shown in Figure 5.27, along with thex-direction force and the moment about

z. Both the latter components are zero for the case of heaving.
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5.5.2 Rectangular Hull form

In the case of heave, only the hull without the bilge keels is considered as results are

available in [Newman 1977] to compare with. The grid details have already been

presented in Section 5.4.3. The same boundary conditions are used in this problem

as described for the heaving semi-circular hull.

Results

Many investigations have been carried out to compute the damping and added-mass

coefficients of two-dimensional cylinder in deep water, as a function of frequency.

For the two-dimensional case, [Vugts 1968] presented results for a family of heaving

cylinders located on the free surface. The results have been revised and presented

in [Newman 1977]. From these, a comparison of the coefficients is performed for a

Beam/Draft ratio of 2.

Figure 5.28 shows the comparison of the added mass and damping coeffi-

cients obtained using the present solver and results presented in [Newman 1977],

for a rectangular hull (B
D
= 2) undergoing heave motion. As is shown in the figure,

three different domain sizes and cell densities are used in order to ensure that the

extent of the grid is larger than the wavelength and the deep-water condition is sat-

isfied. The values of the hydrodynamic coefficients compare very well for Froude

numbers greater than 0.5. ForFnD = 0:4 the results deviate and this can be at-

tributed to inadequate number of cells on the free surface. However, in order to

maintain practical run times, a denser grid was not used.

Detailed results are presented for a typical case withFnD = 1:5 and heave

velocity amplitudeqyo = 0:05. Figure 5.29 presents the velocity vectors and free

surface at two different time instants, separated byT
2
. The phase difference between
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= 2) undergoing heave motion in deep-water, obtained from the present

solver with those presented in [Newman, 1977]
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the radiated waves can be observed clearly.

Figure 5.30 shows the wave profiles of the outward radiating waves at three

different time steps. (Note: In the plot, the two axes are independent in order to

highlight the wave profile). As mentioned earlier, no explicit radiation boundary

condition is specified on the free surface and the outward radiating waves are ob-

tained from the solution.

The pressure contours at three different time instants (t = 0; T
4

and T
2
) are

shown in Figure 5.31. In order to obtain the force acting on the hull, the pressure is

integrated over the the portion of the hull below the mean water line for every instant

of time.

Figure 5.32 shows the three components of forces (Fx; Fy andMz) over one

time period. Of these, only the vertical force component is present and both horizon-

tal force and moment are zero. This is expected as for every point on the boundary,

there is a corresponding point where the pressure is in opposite direction, therefore

cancelling the horizontal force. As mentioned earlier, the force includes only the

pressure component of the force, with the viscous component being insignificant

and therefore ignored.

From these typical results it is obvious that the present method could suc-

cessfully simulate most of the main features of the flow due to a heaving cylinder.

5.5.3 Convergence Study

The convergence of the hydrodynamic coefficients with increasing number of com-

putational cells is presented in this section. The three grid densities used are shown

in Figure 5.33. Grid ’A’ has130� 30 cells, Grid ’B’ has220� 60 cells and Grid ’C’
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Figure 5.33: Grid densities used for convergence study: Grid A (130� 30), Grid B
(220� 60) and Grid C (310� 70) cells

has310� 70 cells.

Table 5.5 shows the added-mass and damping coefficients obtained for the

three grids, forFnD = 1:5. It is seen that as the number of cells increases, the

values of the coefficients converge. This is also demonstrated by Figure 5.34, where

the time histories of the vertical forces is shown for the three grids.
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Grid a22 b22
130� 30 0.5450221 9.8426165E-03
220� 60 0.5661634 1.5587252E-02
310� 70 0.5731037 1.6444225E-02

Table 5.5: Convergence of values of the heave added-mass and damping coefficients
with increasing grid density

t/T

F
y/

(ρ
U

*2
D

2 )

0 0.25 0.5 0.75 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

130 x 30
220 x 60
310 x 70

Convergence of Force History

Grid densities

Figure 5.34: Convergence of force histories with increasing grid density

140



5.6 Roll motions

Ths section presents results for a 2D FPSO hull section undergoing roll motion. The

motion is imposed on the mean position of the hull, in accordance with linear theory.

The roll angle,�, at any time instant is given by� = �osin(!t̂). In this expression,

�o is the amplitude of the motion (in radians or degrees);! is the frequency of

motion; and̂t is time. In the non-dimensional form, this reduces to� = �osin(2�t)

wheret is time non-dimensionalized by the time period of motion,T .

The 2D hull section has the following dimensional features:

� B
D
= 2

� Bilge radius =0:02B

� Bilge keels located at an angle of45o from the vertical side

� Bilge keel lengths,KD = 0; 0:02B; 0:04B and0:06B are considered

� The hull geometry is located such that it is symmetrical about they axis

� The cylinder is assumed to be rolling at the undisturbed free surface

The hydrodynamic coefficients for hull geometries with and without bilge

keels are determined and compared in order to highlight the advantage offered by

bilge keels as roll mitigation devices. The added-mass and damping coefficients are

functions of the non-dimensional frequency (similar in form to the Froude number).

This non-dimensional frequency or Froude number can be defined asFnB = !
q

B
g

.

It should be noted here that the definition ofFnB differs from that used for the heave

motion, where the draft (D) instead of the beam (B) was used.
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5.6.1 Determination of Hydrodynamic Coefficients

For roll, according to linear potential theory, the hydrodynamic moment can be writ-

ten as a linear combination of the inertia and damping terms.

Mz(t) = � a66 �� � b66 _� (5.43)

wherea66 is the roll added-mass coefficient;b66 is the roll damping coefficient;�� and

_� are the angular acceleration and velocity, respectively and these can be obtained

by differentiating the expression of the roll angle,�, with respect to time. The linear

hydrodynamic coefficients can be calculated by extracting the Fourier coefficient of

the primary frequency over a periodT . The following expressions are obtained for

the coefficients:

â66 =
1

��o!

Z T

0
M̂z(t)sin(!t̂)dt̂ (5.44)

b̂66 = � 1

��o

Z T

0
M̂z(t)cos(!t̂)dt̂

where the variables likêMz(t) and t̂ are dimensional. In order to make the coeffi-

cients non-dimensional, a normalization similar to [Yeung et al. 2000] is performed.

a66 =
â66

4�8b2 (5.45)

b66 =
b̂66

4�8b2
s
b

g
(5.46)

(5.47)

whereb is the half-beam of the hull and8 is the submerged sectional area.
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Introducing the non-dimensional variables in Equation 5.44, the following

expressions are obtained for the normalized coefficients:

a66 =
1

�2�o

Z 1

0
Mz(t)sin(2�t)dt (5.48)

b66 = � FnBp
2�2�o

Z 1

0
Mz(t)cos(2�t)dt

Once the time history of the hydrodynamic moment has been obtained, the coeffi-

cients can be obtained by numerically integrating the moment, according to Equation

5.48, using the trapezoidal rule.

5.6.2 Results

The beam of the hull,B is used as the reference length. The solution domain extends

from�26:0B to 26:0B in thex-direction. This extent ensures that for the range of

values ofFnB chosen, the corresponding wavelengths are smaller than the domain.

In they-direction the solution domain extends from 0 to30:0B in order to satisfy

the deep-water condition. The hull geometry has a beam to draft (B
D

) ratio of 2. The

solution is obtained at the end of 10 time periods. The hydrodynamic coefficients

are obtained for range of values ofFnb, which is defined asFnb =
FnBp

2
3

Four different cases are considered. A hull with no bilge keel and hulls with

bilge-keel depthsKD = 2%; 4% and6% of the beam are considered. The hull ge-

ometry without the bilge keel has a rounded corner (bilge radius =0:02B). Results

are presented for all four cases for a roll amplitude,�o of 0.05 radians (2.85 degrees).

For the hull without the bilge keels, the hydrodynamic coefficients are also presented

3Fnb is the way the Froude number is defined in [Yeung et al. 2000]
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Figure 5.35: Comparison of roll added-mass and damping coefficients obtained for
�o = 0:05 & �o = 0:1 (No bilge keel,0:4 � Fnb � 1:4)

for an amplitude of 0.1 radians (5.73 degrees). This is done in order to demonstrate

the linear behavior of the coefficients. Though the present method does not include

viscous effects, it can capture the separated vortices being shed off the bilge keels.

Therefore it is different from a potential flow solver which would allow the stream-

lines to follow the keel geometry, without capturing the separation. However, in the

absence of the bilge keels, there is no vorticity shed and the present solver gives

the inviscid hydrodynamic coefficients. As expected, these inviscid hydrodynamic

coefficients are linear i.e. the values are independent of the roll amplitude. This has

also been observed in [Yeung et al. 2000] for roll amplitudes less than 10 degrees.

The hydrodynamic coefficients obtained for the two roll amplitudes are presented in

Figure 5.35 forFnb ranging from 0.4 to 1.4. The coefficients are almost identical,

thereby confirming their linear nature.

The numerical values of the added-mass and damping coefficients (for no
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Figure 5.36: Comparison of roll added-mass and damping coefficients obtained from
present method for�o = 0:05 and results presented in [Yeung et al. 2000] (No bilge
keel,0:4 � Fnb � 1:4)

bilge keel,�o = 0:05) are also compared with the ’inviscid’ results presented in

[Yeung et al. 2000]. As is seen in Figure 5.36, the damping coefficients obtained

from the present method compare well with the results of [Yeung et al. 2000]. How-

ever, the present method predicts much higher values of the added-mass coefficients,

especially for lower values ofFnb.

In order to investigate the effect of the grid and domain size on the added-

mass coefficients, the coefficients obtained using three different domain sizes and

grid densities are compared in Table 5.6. It is seen that increasing the grid density or

the domain size does not lead to a substantial change in the values of the coefficients.

Therefore, the reason for the discrepancy in the results from the present method and

the inviscid results presented in [Yeung et al. 2000] needs to be further investigated.

A typical time history of the hydrodynamic moment forFnb = 0:8 (4%
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Grid a22 b22
�26B < x < 26B; 0 < y < 30B; 370� 100 0.06582 0.01332
�26B < x < 26B; 0 < y < 30B; 490� 150 0.0649 0.01405
�50B < x < 50B; 0 < y < 60B; 590� 200 0.06416 0.01378

Table 5.6: Variation in values of the roll added-mass and damping coefficients for
different grid densities and domain sizes (No bilge keel,�o = 0:05, Fnb = 0:6)

bilge keel) is presented in Figure 5.37. The figure shows the convergence of the

moment over 10 time periods. The force history over the last period is used to

determine the hydrodynamic coefficients. In Figure 5.38, the hydrodynamic moment

for the four hull geometries is presented over one time period and a value ofFnb =

0:8. It is observed that with increasing bilge keel depth, the hydrodynamic moment

increases and undergoes a phase shift. Equation 5.38 can be solved for using the

approach described in Section 5.6.1. Expressions for_� and �� can be obtained by

differentiating the expression of the roll angle with respect to time.

The effect of the bilge keels is to increase the added moment of inertia and

the radiation damping considerably. This is demonstrated in Figures 5.39 and 5.40,

where the hydrodynamic coefficients for the four different hull geometries are com-

pared. As expected, an increase in keel depth increases both the added-mass and

damping coefficients over the entire range ofFnb values. This goes to show the

effectiveness of the bilge keels in roll motion mitigation.

Vorticity and Flow Patterns

Figure 5.41 details the converged flow patterns at four different time instants over

one period of oscillation for the 6% bilge keel hull atFnb = 0:8. Strong vortices are

created due to the bilge keels and these are shed as the keel moves in the opposite
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Figure 5.37: Time history of hydrodynamic moment forFnb = 0:8, 4% bilge keel
and�o = 0:05

direction. Comparing time instants half a period apart, it can be seen that the shed

vortices are symmetrical.
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Figure 5.39: Comparison of roll added-mass coefficients obtained from present
method for four different hull geometries: No bilge keel, 2%, 4% and 6% bilge
keels (�o = 0:05, 0:4 � Fnb � 1:4)
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Figure 5.40: Comparison of roll damping coefficients obtained from present method
for four different hull geometries: No bilge keel, 2%, 4% and 6% bilge keels (�o =
0:05, 0:4 � Fnb � 1:4)
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Figure 5.41: Flow-field around the hull at four time instants: (a) t = 0, (b) t =T
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(6% bilge keel,�o = 0:05, Fnb = 0:8)
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

A marriage of the stator-rotor-pod is seen in the Siemens Schottel Propuslor (SSP)

[Blenkey 1997] (see Figure 1.1). This propulsor features the Schottel Twin Propeller

(STP), where the propeller load is distributed 50/50 to two propellers, one forward

and one aft of a lower housing. This housing features two airplane type fins (simi-

lar to stator blades) that recover rotational energy from the forward propeller. The

STP in itself achieves efficiencies up to 20% higher than standard Rudder-propellers.

Conventional high power, low speed synchronous motors are so large and heavy that

they must be housed within underwater housings with a diameter of as much as 60%

that of the propeller diameter, with a dramatic negative influence on the unit’s overall

efficiency. Siemens has developed permanently-excitepd synchronous motors with

a longitudinal electrical flow design, which allows a significant reduction in the di-

ameter of the motor and, in turn, in the diameter of the housing of a podded drive.

This allows optimum hub/propeller diameter ratios to be achieved.

This is just one example of the growing complexity of marine propulsors.

As the marine industry’s demand for efficient propulsors increases, better and robust

CFD tools are required to handle the complex geometries and difficult flow condi-

tions inherent to the new design propulsors. This work is an effort towards that end.
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A vortex lattice method based potential solver has been successfully coupled with a

finite volume method based Euler solver to solve for flow around multi-component

and podded propulsor systems. Convergence studies for the method as well compar-

ison with experimental data has been performed for both a stator-rotor configuration

and a pull-type podded propulsor. For a simple pod geometry, different propeller

configurations have been solved for and it has been found that the pull-type propul-

sor offers maximum advantage in terms of drag reduction. Numerical results have

been compared with experimental data as well as with results from a coupled vis-

cous/potential flow code for a single pulling podded propulsor and the values com-

pare well.

Another solver based on the finite volume method has been developed for

solving the unsteady, two-dimensional Euler and Navier-Stokes equations. This has

been validated extensively using simple tests for which analytical results are known,

all the while advancing in a logical manner towards the final goal of studying the

separated flow past bilge keels fitted to the hull of a FPSO. In order to validate the

adequacy of the Euler solver for capturing the effects accurately, results for oscillat-

ing flow past a flat plate have been obtained using both the developed solver and a

laminar, unsteady Navier-Stokes solver. The force history obtained compares well

and justifies the use of the Euler solver for modeling strongly separated flow. As

a first step towards modeling of hull motions, the heave hydrodynamic coefficients

for a rectangular hull in deep water have been compared with results presented in

[Newman 1977]. Next, results are presented for a hull, with and without bilge keels,

undergoing roll motions. The added-mass coefficients obtained from the present

method are much higher compared to those presented by [Yeung et al. 2000]. The

reason for this discrepancy needs to be investigated. Once the issue has been re-
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solved, it would be possible to make fair comparisons with the experimental data

presented in [Yeung et al. 2000]. The coefficients obtained for different bilge keel

depths and forcing function amplitudes are compared and the effect of the bilge keels

on roll motion mitigation is demonstrated. The results show that the present method

can successfully simulate most of the characteristics of the physical flow, including

the vortex shedding.

6.2 Recommendations

The present work is but a first step in developing a robust and accurate tool for

modeling flow past bilge keels. Following are some recommendations for further

research that needs to be done before the final goal is achieved.

� Determination of three-dimensional hydrodynamic coefficients: The present

method determines the two-dimensional hydrodynamic coefficients for a 2D

hull section. The final goal is to estimate the hydrodynamic coefficients for

a 3D ship hull. This can be done usingstrip theory. Strip theory has been

extensively used since the 1950’s to provide reliable estimates of sea keeping

performance for a wide range of hull forms and sea conditions. Calculations

are made in the frequency domain, with some modifications due to forward

speed. There are three main stages to computing the sea keeping response:

1. The ship is divided into a number of transverse sections, and the two-

dimensional hydrodynamic coefficients are calculated for each section.

The barge-type rectangular hull section used in the present work is typ-

ical for the mid-ship region of the FPSO. As the bilge keels are likely
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to be located around this length, using strip theory simply involves per-

forming repeated calculations for simple rectangular hull forms, which

the method has been shown capable of doing.

2. The two-dimensional values obtained are integrated along the length of

the vessel, to obtain the global coefficients of the coupled motions of the

vessel. It is often assumed that the vertical plane and horizontal plane

motions may be considered independently. Thus the coupled heave and

pitch responses are computed and then the coupled sway, roll and yaw.

3. Having obtained the global hydrodynamic coefficients, the equations of

motion can now be solved to give the amplitudes and phases of the heave,

pitch, sway, roll and yaw motions. Once the motions are known, it is

possible to calculate the wave induced shear force and bending moment.

� Combine with potential flow solver: A potential flow solver such as WAMIT

is an accurate and fast tool to determine the hydrodynamic coefficients. How-

ever, due to the assumptions of potential flow theory, the effects of the sep-

arated flow cannot be captured by it. That is where the present tool fits in.

It provides a fast and computationally cheap (compared to a viscous solver)

means of determining the hydrodynamic coefficients which include the sepa-

ration effects. These can be used to correct the coefficients from WAMIT and

therefore, model the motions of the FPSO better.

� Three-dimensional unsteady Euler solver: Another approach to determine the

3D hydrodynamic coefficients would be to extend the present method to three

dimensions. This would allow modeling of the entire ship hull.

156



� Inclusion of incident waves: The present method assumes that the forcing

function is periodic and known. However, in real sea environment, this is

never true. A more useful tool would have allow the user to specify a given

sea-state and study the resulting motions.

� For the coupled VLM/FVM solver, extensive validation tests are required be-

fore contemplating the application of the technique to real life problems. Fur-

ther validations are required and results need to be compared with experi-

mental data, for more realistic geometries. The method can just as easily be

extended for multi-component podded geometries. Future work in this direc-

tion would include prediction of cavitation inception on the strut. This can

also be extended to rudder geometries. Using the hydrofoil version of a panel

code such as PROPCAV would allow rudder cavitation to be studied.
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