
ENGI N EE RI NG

G
OR UP

ENVIRONMENTAL AND WATER RESOURCES ENGINEERING

DEPARTMENT OF CIVIL ENGINEERING

Austin, TX 78712

THE UNIVERSITY OF TEXAS AT AUSTIN

CO E AN

Report No. 06−2

Fahad Mohammed

August 2006

Propeller Lifting Line/Rudder Interaction



Copyright

by

Fahad Mohammed

2006



Propeller Lifting Line/Rudder interaction

by

Fahad Mohammed, B.Tech.

Thesis

Presented to the Faculty of the Graduate School

of The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

August 2006



Propeller Lifting Line/Rudder interaction

APPROVED BY
SUPERVISING COMMITTEE:

Supervisor:
Spyros A. Kinnas

Reader:
Kamy Sepehrnoori



To my parents, my brother and sister and all my friends.



Acknowledgements

I would like to take this opportunity to thank several people whose constant support,

guidance and encouragement were invaluable during my research work and helped

me complete my Masters thesis.

At the onset, I would like to thank my supervisor, Dr. Spyros A. Kinnas

with greatest appreciation. I am especially grateful for his unending support and

guidance, which helped me immensely during the course of my graduate studies

and research. I am thankful to him for his understanding nature.

I would also like to thank Dr. Kamy A. Sepehrnoori for agreeing to be my

reader despite his busy schedule. His comments, assistance and encouragement were

invaluable to give this thesis its final shape.

I would like to thank my parents, my sister Farah, my brother Faizan and my

friends, especially Shashank, Shiva and Shankar who stood by me throughout this

time and encouraged me to move on at every fallen step.

I would like to thank the members of the Computational Hydrodynamics

Laboratory, Dr. Hanseong Lee, Mr. Hua Gu, Mr. Yi-Hsiang Yu, Ms. Hong Sun,

Mr. Vimal Vinayan, Mr. Bikash Mishra, Mr. Yumin Deng and Mr. Lei He for

their unending support and suggestions. It is with great fondness that I would like to

thank Mr. Yoonsik Hwang and Dr. Ilsung Moon for their advice and concern.

Support for this research was provided by Phase IV of the “Consortium

v



on Cavitation Performance of High Speed Propulsors” with the following mem-

bers: AB Volvo Penta, American Bureau of Shipping, Daewoo Shipbuilding and

Marine Engineering Co. Ltd., Kawasaki Heavy Industries, Naval Surface War-

fare Center Carderock Division, Office of Naval Research (Contract N0001404-1-

0287), Rolls-Royce Marine AB, Rolls-Royce Marine AS, VA Tech Escher Wyss
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by
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SUPERVISOR: Spyros A. Kinnas

A complete understanding of the flow dynamics around a rudder will help

us create accurate models for flow around rudder. These models will help us study

completely unsteady propeller rudder interactions and create efficient rudder de-

sign by accurately predicting the cavitation on the rudder surface. The effect of

the cavitating tip vortex on the rudder needs to be studied to model truly unsteady

propeller/rudder interaction and study its effect on cavitation.

At first, the vortex/hydrofoil interactions are modelled using a commercial

CFD solver, FLUENT. The dynamics of a 2D vortex in a uniform flow and a 3D vor-

tex/hydrofoil interaction is studied. Various grid and time stepping scheme depen-

dence studies are performed to understand the modeling nuances of vortex/hydrofoil

interactions using a CFD solver and to control the amount of vortex dissipation.

Next, the vortex/hydrofoil interactions were modelled as a line vortex/hydrofoil

interaction model using a BEM based flow solver, PROPCAV. PROPCAV solves for
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the flow around the hydrofoil including the effects of a line vortex. After solving

for the foil, total velocity at the line vortex location is evaluated and the vortex is

convected with this velocity. The pressure distribution on the foil surface is obtained

to evaluate the effect of the vortex on the hydrofoil.

Then a lifting line model for a propeller was used to model the alignment of

the tip vortex wake with the total flow velocities to maintain the force free condition

on the wake. This alignment model was coupled with the line vortex/hydrofoil in-

teraction model to evaluate the effect of the tip vortex wake on the hydrofoil. This

tip vortex/hydrofoil interaction model is truly unsteady and at each lifting line angle,

the minimum pressure on the foil surface was obtained to study its variation with the

lifting line angle.

The objective of this research is to predict the pressure distribution on the

foil surface in the presence of a vortex and study the variation of minimum pressure

with the lifting line blade angle.
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Chapter 1

Introduction

1.1 Background

A marine rudder is essential for the maneuverability, directional control and the

steering of any ship. The rudders are typically placed in the aft of the ship, behind a

propeller, in the slipstream of a propeller. Rudders operate by redirecting the flow of

water past the hull, thus imparting a turning moment to the ship. The effectiveness

of a rudder in producing a turning moment is proportional to the amount of lift

generated by the rudder.

The problem of cavitation on the rudder surface is an important issue in the design of

a rudder. Cavitation on a rudder produces undesirable effects on it, thus decreasing

the efficiency of a rudder in the maneuverability of any ship. It may lead to increased

loads and erosion on the rudder surface, thereby greatly reducing the performance of

the rudder. It may also lead to unwanted acoustic effects on the hull and vibrations

on the rudder and the adjoining hull. The various forms of cavitation that can affect

the rudder are sheet cavitation, which can occur on either the face side or the back

side of the rudder, gap cavitation, which occurs due to low pressures in the gap

between the rudder and hull and tip vortex cavitation which can occur due to the tip

vortex bursting or due to the low pressures induced by the tip vortices on the rudder.
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Cavitation is an important phenomenon that occurs when the pressure falls below

the vapour pressure. This causes the formation of cavities, which on bursting could

lead to the material erosion. This subsequently could lead to the loss of performance

of the rudder. This makes it essential to study all the possible sources of rudder

cavitation.

A complete understanding of the flow dynamics that take place in the vicinity of a

rudder can help us to accurately model the flow around it and obtain efficient rudder

designs. A particularly interesting and important phenomenon is the interaction of

the propeller blade tip vortices with the rudder. The tip vortices from the propeller

blade tip, impinging on the rudder are seen in Figs. 1.1 and 1.2. The curling of the

tip vortices around the rudder and the tip vortex wake contraction can also be seen

in these figures.

These tip vortices are cavitating vortices, i.e these vortices have a cavity core. Since

these vortices induce a low pressure on the rudder surface it is important to analyse

the effects, if any, of these tip vortices on the process of cavitation on the rudder sur-

face. Since these vortices impinge with a regular frequency, based on the rotational

speed of the propeller, on the rudder, it is also important to analyse the effect of

these vortices on the vibrational aspects of the rudder and the hull and the creation

of acoustic noise as well.

1.2 Motivation

The advancement of ship technology has led to increased loads on the ship pro-

pellers. This increases the complexity of the vortical inflow to the rudder. Hence, a
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Figure 1.1: The tip vortices impinging on a rudder as seen in an experiment by
Kracht [1989a,b].

complete understanding of the flow dynamics around a rudder will help us to create

efficient rudder designs and accurate numerical models of the flow around a rudder.

These models can help us to study all the possible sources of cavitation on a rud-

der and lead to better models of cavity prediction on the rudder surface. Thus, it is

essential to study all the possible sources of cavitation on the rudder.

The tip vortex flow requires a careful study to understand its effect on the rudder.

These vortices are cavity core vortices. Hence, the study of the interaction between

these vortices and the rudder will enable us to understand the effect of these vortices

on the rudder cavitation. This will also enable us to study the phenomenon of vortex

bursting that might occur when these vortices impinge on the rudder. The effect of

3



Figure 1.2: The tip vortices impinging on a rudder at an angle of attack as seen in
experiment by Kracht [1989a,b].

these vortices and their contribution to the cavitation occurring on the rudders can

also be investigated.

Since most propeller rudder interaction studies are based on the effect of the cir-

cumferentially averaged propeller flows onto the rudder, a fully unsteady tip vor-

tex/rudder interaction will help us to predict the unsteady effects of these tip vortices

on the rudder. This, in future, can lead to the modeling of truly unsteady propeller

rudder interaction models.

It is important to understand the physics behind vortex/body interactions in order to

understand and evaluate the effect of the propeller blade tip vortices on a rudder of

a ship. A clear understanding can also help us to accurately model the interaction
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between these tip vortices and the rudder. There are several CFD tools available to

model this problem and to evaluate the interactions. A complete CFD model of the

ship propeller and its rudder can track the evolution of these tip vortices from the

propeller blade and its convection downstream over the rudder. CFD models can

help us in evaluating these interactions and assess the effect of these tip vortices on

the rudder. However, the size of the domain and the complexity involved in meshing

the domain demands large computational requirements. When the problem is solved

as an unsteady problem, the requirements further increase, owing to the complexity

of involving a time dependent mesh and the solution. Thus, a BEM based model

will greatly reduce the complexity of the computational involved, when compared

to a CFD model, since only the boundary of the domain needs to be meshed, unlike

the meshing of the entire domain in a CFD model.

Thus, a BEM based model for propeller tip vortices/rudder interaction is developed

to understand the effect of the tip vortices on the pressure distribution on the surface

of the rudder.

1.3 Objectives

The work presented in this thesis focuses on developing a numerical model to study

and understand propeller tip vortex/rudder interaction. The aim of developing such

a model is to predict the pressure distributions on the rudder surface due to these tip

vortices, which in future, can help us to predict the effect of the tip vortices on the

rudder cavitation and acoustic noise on the rudder and the hull.

The tip vortex/rudder interaction model consists of
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• A line vortex/ interaction model, using a BEM based flow solver to solve for

the flow around the hydrofoils, PROPCAV.

• A lifting line model of propeller flows is used to model the lifting line and its

tip vortex wake. This model includes the alignment of the tip vortex wake to

the total flow field to satisfy the force free condition on the wake.

• The line vortex/hydrofoil interaction model is coupled with the lifting line tip

vortex alignment model to finally model the tip vortex/rudder interactions.

1.4 Overview

This section gives an overview of the complete thesis.

Chapter 1 gives an introduction to rudder flows, the actual problem, the motivation

to solve the problem, the objectives of this work and the overview of the entire thesis.

Chapter 2 presents a summary of previous work done on vortex/hydrofoil interac-

tions, and on Boundary Element Methods for hydrofoil flow problems on which

PROPCAV is based on.

Chapter 3 gives a formal definition of the problem, the solution of the problem,

the mathematical formulation of the solution and the numerical implementation of

the formulation for line/vortex hydrofoil interactions, lifting line tip vortex wake

alignment and the coupling of these two models.

In Chapter 4, the results for vortex/hydrofoil interactions using a commercial CFD

solver, FLUENT are presented.
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Chapter 5 discusses results of vortex/hydrofoil interactions and the convergence tests

and studies performed, using a BEM flow solver, PROPCAV.

Chapter 6 describes the tip vortex alignment process using the lifting line flow rep-

resentation of the propeller flows.

Chapter 7 gives the results of the effect of the aligned lifting line tip vortex on the

rudder.

Chapter 8 summarises the work done, the conclusions, the possible improvements

and the future work.
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Chapter 2

Literature Review

The tip vortex cavitation of propeller blades has been studied extensively (see Kuiper

[2001]), but very few studies exists on the effect of these tip vortices on a rudder. In

Kracht [1989a,b], an experiment was performed to study propeller-rudder interac-

tions. Here, the various vortex phenomenon such as the vortex evolution, the curling

of the tip vortices around the rudder and the slipstream contraction in terms of the

reduction of the radius of the tip vortex can be seen. An attempt has been made

in this work to model the phenomenon observed in the experiment done by Kracht

[1989a,b] and to predict the pressure distributions on the surface of the rudder due

to these tip vortices.

2.1 Vortex Hydrofoil Interactions

Understanding the physics of vortex body interactions will help us to create better

and accurate models to predict the behaviour of the vortex around the body and

its effect on the body. These interactions give rise to various phenomenon such as

production of noise, onset of cavitation, etc thus leading to unsteady loads on the

body.
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In Rockwell [1998], the underlying physics of the vortex body interactions were

discussed with the emphasis on the origin of the induced loading on the bodies due

to the vortex. Various cases of vortex body interactions were also discussed. The

interaction of a normal vortex with a cylinder was studied in detail by Krishnamoor-

thy et al. [1999] for the case of a cylinder having a diameter much larger than the

normal vortex core diameter. The vortex core deformation was studied including the

formation of secondary streamwise vortices along the cylinder. This normal vortex

cylinder interaction can be extended to the interaction of a normal vortex with a hy-

drofoil. Liu and Marshall [2004] performed a computational study of the interaction

of a normal vortex with a hydrofoil. These computations were performed by solv-

ing full Navier-Stokes equations in primitive-variable form using a finite-volume

method, by meshing the entire domain with hexahedral elements. Wood and Grace

[2001] employed a low order BEM based model to investigate the unsteady wing

response to the presence of a spanwise vortex.

The study of vortex hydrofoil interactions can be extended to study the effect of

propeller blade tip vortices on a rudder and the hull. Exhaustive studies exists on

a similar phenomenon in the case of the rotor blades tip vortex interaction with the

other blades or the fuselage of a helicopter. A tip vortex model for the rotor blades

tip vortex was developed by Ramasamy and Leishman [2002] based on the vortex

Reynolds number. This model, in combination with a model for vortex filament

stretching and rotational flow on the turbulence inside the tip vortices was devel-

oped to estimate the temporal growth properties of the helicopter blade tip vortices.

Ananthan et al. [2002] investigated the effects of vortex filament strain or stretching

on the rotor wake modeling by solving the Navier-Stokes equations represented by

a velocity-vorticity formulation. The authors evaluated the evolution of the rotor tip

9



vortices using a Lamb-Oseen core model for the tip vortex, and explored the strain

effects on the rotor tip vortices. Li et al. [2004] investigated the formation of the

rotor tip vortex for a two-bladed rotor using lifting line and lifting surface meth-

ods, and presented numerical results for the circulations and the contracted wake

geometries.

The main difficulty in accounting for the effects of the propeller tip vortices on the

rudder is in the modeling of these vortices and tracking its deformation under the

influence of the rudder. A RANS model can determine the track of s tip vortex

and its interaction with the rudder and the hull. But a full RANS computation can be

cumbersome due to the complexity and size of the domain. A BEM model for hydro-

foil flows, coupled with an appropriate vortex model (with a cavity core), can solve

the rudder-vortex interaction with relative ease and computational efficiency. Most

of the theoretical studies on propeller-rudder interaction were carried out based on

coupled potential methods, in which the propeller and rudder problems were solved

separately, and the interaction taken into account via the circumferentially averaged

flow induced by the propeller (Pyo and Suh [2000]; Han et al. [2001]; Achkinadze

et al. [2003]; Greco and Salvatore [2004]; Kinnas et al. [2006]). However, the cir-

cumferentially averaged flow can not correctly represent the flow field around the

rudder, since the flow is fully non-uniform and in an unsteady state.

Hence, this thesis aims to develop a completely unsteady propeller/rudder inter-

action model by first understanding vortex/hydrofoil interactions. The line vor-

tex/hydrofoil model is developed by modifying a Boundary Element Method based

routine, PROPCAV for unsteady flow around a hydrofoil.
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2.2 Boundary Element Method

Boundary Element Methods have been found to be very effective in solving poten-

tial flow problems around hydrofoils and propellers. Generally, the domain of the

problem for flow around propeller or hydrofoil will be complex. Using CFD solvers

require the meshing of the entire domain. But, solving the same problem using BEM

requires only the boundary of the domain to be meshed, thus making it a viable op-

tion to solve for complex flow problems such as flow around a cavitating propeller

or a cavitating rudder.

The perturbation potential based panel method was introduced for the analysis of

non-cavitating propeller performance in steady flow by Lee [1987] and Kerwin et al.

[1987]. Hsin [1990] and Kinnas and Hsin [1992] extended the analysis of non-

cavitating propellers in unsteady flow using the hyperboloidal geometry.

A low-order potential based boundary element method was introduced by Kinnas

and Fine [1992, 1993] and Fine and Kinnas [1993] for the non-linear analysis of

3-D flow around cavitating hydrofoils or cavitating propellers under the influence of

non-axisymmetric inflows. This method was named PROPCAV. Over the years, im-

provements were made and additional features were introduced in PROPCAV such

as prediction of leading edge and mid-chord partial cavitation on the face or back

of the blades by Mueller and Kinnas [1999], treatment of mixed partial and super

cavity on both sides of the hydrofoil simultaneously by Young and Kinnas [1999,

2001] and treatment of super cavitating propellers with finite thickness trailing edge

as well as surface piercing propellers by Young and Kinnas [2001, 2003]. The treat-

ment of a developed tip vortex cavity and a fully unsteady wake alignment procedure

were also included in PROPCAV by Lee and Kinnas [2001, 2004].
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In the present work, the hydrofoil version of PROPCAV is used to solve the problem

of the unsteady flow around a non-cavitating hydrofoil and to predict the pressure

distributions on the hydrofoil due to the presence of a line vortex and due to the

lifting line tip vortex wake.
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Chapter 3

Mathematical Formulation

In this chapter, the first section deals with the mathematical formulation for solving

the potential flow around a three dimensional hydrofoil using Boundary Element

Methods or panel methods. In the next section, the methodology used to evaluate

the effect of a line vortex on a hydrofoil is shown. The third section deals with

the technique involved in aligning a helical vortex to the total flow field in order

to maintain the force free condition on the aligned vortex. The last section deals

with the combination of the helical vortex alignment and the line vortex/hydrofoil

interaction to evaluate the effect of a lifting line tip vortex wake on a hydrofoil.

3.1 Boundary Element Method for flow around hydrofoils

3.1.1 Background

There has been a significant amount of evolution in computational methods for engi-

neering design and analysis. They have now become an essential simulation tool for

increasing accuracy of the design process. One of the popular tools for numerical

computations is the Boundary Element Method, which is based on integral equa-

tions.
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BEM involves the transformation of the partial differential equations describing the

behaviour of variables in the domain under consideration in terms of the integral

equations, relating only on boundary values.

The advantages of using BEM are :

1. Only boundaries need to be discretized, thus minimizing storage and compu-

tational time used.

2. Problems involving infinite or semi infinite domains can be solved, since the

domain at infinity need not be discretized.

3. Problems involving singularity or discontinuity can be effectively dealt with.

4. Boundaries of discontinuities, such as hydrofoil wakes, can be dealt with ef-

fectively.

The problem of the potential flow around a hydrofoil can be visualised as shown in

Fig. 3.1

3.1.2 Governing Equation

An inviscid irrotational flow is a potential flow. In potential flow, the velocity field ~q

can be associated with a scalar function, Φ, such that

~q = ∇Φ (3.1)

where, the scalar function, Φ, is known as the velocity potential. Since the flow field

has to satisfy the continuity equation

∇~q = 0 (3.2)
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Figure 3.1: Potential Flow around a hydrofoil.

the velocity potential satisfies the Laplace’s equation

∇2Φ = 0 (3.3)

which is the governing equation for potential flow problems.

3.1.3 Boundary Conditions

On the surface of the hydrofoil, as shown in Fig. 3.1, since the flow does not pene-

trate the foil, the velocity normal to the foil should be zero.

~q · n̂ = 0 (3.4)
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This gives the kinematic boundary condition on the foil surface

∂Φ

∂n
= n̂ · ∇Φ = 0 (3.5)

The condition at infinity

∇Φ ∼ ~Vin (3.6)

In addition, the velocity potential also has to satisfy the Kutta condition at the trailing

edge of the foil

∇Φ = finite (3.7)

The solution to Eqn. 3.3 corresponding to the above boundary conditions can be

obtained from the fundamental solution of a point source in an infinite space, also

known as Green’s functions.

3.1.4 Green’s Theorem

Consider a finite volume ν enclosed by a surface S as shown in Fig. 3.2. Suppose G

and F are two harmonic functions defined inside ν.

∇2F = 0, inside ν

∇2G = 0, inside ν (3.8)

Then, Green’s theorem says that the following equation holds true for F and G

∫ ∫

S

[

G
∂F

∂n
− F

∂G

∂n

]

dS = 0 (3.9)

where n̂ is the unit vector pointing out of the domain ν, normal to the surface S as

shown in Fig. 3.2. This is Green’s third identity.
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3.1.5 Green’s formula for a three dimensional body

Consider a body B, enclosed by a surface SB , in a three dimensional domain, en-

closed by a surface Sc as shown in Fig. 3.3. Assume that φ is a harmonic function

outside B.

∇2φ = 0, outside B (3.10)

Also, consider a unit source at a point P outside B. The potential G associated with

that unit source is given as

G =
−1

4πr
(3.11)

where r = |~r| and ~r = ~rF − ~rP , with ~rF and ~rP being the position vectors corre-

sponding to any field point F outside B and point P respectively, as shown in Fig.

3.3

Consider a sphere of radius RP at point P enclosed by surface SP and a surface SC
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Figure 3.3: Body B and unit source P , adjusted from Kinnas [2006].

surrounding the body and the source. Applying Green’s theorem inside the volume

surrounded by SC , SB and SP and considering the limits SP → 0 and SC → ∞, we

obtain the following equation

4πφ =

∫ ∫

SB

[

φ
∂

∂n

1

R
−

∂φ

∂n

1

R

]

dS (3.12)

The above equation shows that the value of φ at any point P outside B depends only

on the values of φ and
∂φ

∂n
on the surface SB of the body B. It can also be seen that

the potential at P is a superposition of the potential at P due to sources and dipoles

on the body surface SB. The potential at P is φP outside B,
φP

2
on SB and 0 inside

SB . Similarly, for a harmonic function φi inside the body, we obtain an integral that

is 0 outside the body,
φiP

2
on the body and φiP inside the body. Adding the two

integrals together, we obtain an integral equation for φ on a 3D body. This integral
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equation forms the basis of 3D Boundary Element Methods.

2π(φ + φi) =

∫

SB

[

(φ − φi)
∂

∂n

1

R
−

(

∂φ

∂n
−

∂φi

∂n

)

1

R

]

dS (3.13)

3.1.6 Green’s formula for hydrofoil

Consider a hydrofoil as shown in Fig. 3.1, subjected to an inflow ~Vin. Let Φ be the

total potential of the flow field and Φin be the potential associated with the inflow.

Then, we define the perturbation potential as

φ = Φ − Φin (3.14)

From Eqn. 3.13, taking φi = 0 and applying the kinematic boundary condition on

the hydrofoil,

∂φ

∂n
=

∂Φ

∂n
−

∂Φin

∂n

= −
∂Φin

∂n
, From Eqn. 3.5

= −~Vin · n̂ (3.15)

and applying the Kutta condition (Eqn. 3.7)on the trailing edge of the foil and noting

the fact that there exists no cross flow across the hydrofoil wake surface, we end up

with the integral equation for the perturbation potential on the hydrofoil

2πφ =

∫ ∫

SB

[

φ
∂

∂n

1

R
−

∂φ

∂n

1

R

]

+

∫ ∫

SW

∆φW
∂

∂n

1

R
dS (3.16)

Once the perturbation potential φ is determined on the hydrofoil surface, the velocity

on the hydrofoil is determined as

~q = ∇Φ

= ∇(Φin + φ)

= ~Vin + ∇φ (3.17)
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The pressure coefficient is defined as

CP =
P − Po

1

2
ρU2

in

(3.18)

where, Po and Uin are far field pressure and inflow velocity magnitude or far field

velocity magnitude. This can also be written as

CP = 1 −
|~q|2

|~Vin|2
(3.19)

from Bernoulli’s equation.

3.1.7 Numerical Implementation

The numerical code, PROCPAV was developed based on the panel methods. This

method discretizes the integral equation given in Eqn. 3.16 to obtain the perturbation

potential on the hydrofoil. The hydrofoil and the wake surface are discretized using

quadrilateral panels, as shown in Fig. 3.4.

Constant strength sources and dipoles are assumed to be distributed on the panel

surfaces on the hydrofoil and constant strength dipoles are distributed on the wake

surface. Then the above equation is written in a matrix form, where the left hand

side matrix contains the unknown dipole strengths of the hydrofoil panels and the

right hand side matrix contains the known inflow velocity to the hydrofoil panels.

The matrix system can be written as

Aφ = B
∂φ

∂n
(3.20)

A = [Aij] is the matrix of the dipole influence coefficients on the hydrofoil and

wake panels. [Aij] is the influence coefficient of the unit dipole on the j th panel
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Figure 3.4: Discretized hydrofoil with the wake under an inflow velocity ~Vin.

acting on the ith control point. φ is the unknown dipole strength which is solved for

in Eqn. 3.20. Similarly, B = [Bij] is the source influence coefficient matrix of the

hydrofoil panels and
∂φ

∂n
is the known source strength in terms of the known inflow

velocity. The influence coefficients for the sources and dipoles are evaluated using

the multipole expansion of the potentials as given by Newman [1985].

The Kutta condition at the trailing edge of the foil, can be enforced numerically

by applying the Morino condition [Morino and Kuo [1974]], which requires the

potential difference across the trailing edge to be equal to the potential jump across

the wake surface. But in PROPCAV, an improved iterative pressure Kutta condition

[Kinnas and Hsin [1992]]is applied, where the difference of potentials at the two

sides of the trailing edge is modified, in order to achieve equal pressures at both

sides of the trailing edge everywhere along the span of the rudder [Young and Kinnas

[2001]].
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3.2 Line Vortex/hydrofoil interactions using BEM

The boundary integral formulation for a hydrofoil makes it easier to evaluate the

effect of a line vortex on a hydrofoil as compared to traditional CFD methods. The

discretized form of the boundary integral equation can be transformed into a matrix

system, where the left hand side matrix is the unknown and the right hand side matrix

is a known quantity. The right hand side matrix is the matrix containing the potential

induced by the sources, which is known from the inflow velocity to the hydrofoil.

Since the presence of a vortex in the vicinity of the hydrofoil modifies the inflow

field to the hydrofoil, by changing the right hand side matrix to include the influence

of the vortex in the source strengths will enable us to evaluate the effect of the

vortex on the hydrofoil. The vortex induced velocity at the foil control points are

determined and added to the known inflow velocity to solve the vortex/hydrofoil

interaction problem. In order to determine the modified inflow field to the hydrofoil,

the velocity induced by a line vortex should be determined first.

The velocity induced by a line vortex at any point in space, is derived in detail in

Katz and Plotkin [2002]. For completeness, the derivation is summarised and the

numerical implementation of the derivation is shown.

3.2.1 The Biot-Savart Law

Consider a vortex segment as shown in Fig. 3.5. This segment has a length dl and a

circulation Γ around it. Let ~r1 and ~r0 be the position vectors of the vortex segment

and the field point P , as shown in Fig. 3.5
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Then, Biot-Savart law states that the velocity field induced by the vortex is given as

~q =
Γ

4π

∫

d~l × (~r0 − ~r1)

|~r0 − ~r1|
3

(3.21)

This can also be written in a differential form as

∆~q =
Γ

4π

d~l × (~r0 − ~r1)

|~r0 − ~r1|
3

(3.22)

3.2.2 Velocity induced by a line vortex in a 3D space

The velocity induced by a straight vortex segment can be derived based on the Biot-

Savart law [Katz and Plotkin [2002]].

Consider a straight vortex segment as shown in Fig. 3.6.
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At point P , the velocity induced by the segment 1 − 2 is qθ. This induced velocity

will have only a tangential component qθ as shown in Fig. 3.6. From Eqns. 3.21 and

3.22 and after some algebra, it can be shown that the tangential velocity induced is

given as

(qθ)1,2 =
Γ

4πd

∫ β2

β1

sin βdβ

=
Γ

4πd
(cos β1 − cos β2) (3.23)

It can be noted that there exists a singularity as the field point P approaches the line

vortex, when the point P is on the line vortex. This can be avoided by assuming that

the vortex segment has a core with a small core radius. The self induced velocity of

a curved vortex filament with a core was given in Crimi [1965] and was later imple-

mented numerically by Sadler [1971]. The following formulation is a summary of

the numerical implementation presented in Sadler [1971].

Consider a curved vortex filament consisting of two curved vortex segments with

core radius ai−1 and ai, as shown in Fig. 3.7. Let these two vortex segments have
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vertices Pi−1, Pi and Pi, Pi+1, and let the circulation around each segment be Γi−1

and Γi. Let R be the radius of curvature of the segment Pi−1, Pi+1 and O be the

center. Let the two segments subtend an angle βi−1 and βi at O respectively. Then

the self-induced velocity of the segment Pi−1, Pi+1 at Pi is given as

qself =
1

8πR

(

Γi−1

[

log

(

8R

ai−1

tan
βi−1

4

)

+
1

4

]

+ Γi

[

log

(

8R

ai

tan
βi

4

)

+
1

4

])

(3.24)

If the point Pi lies on the extremity of the vortex segment, then Eqn. 3.24 can still

be used to evaluate the self induced velocity at that point. Suppose that the vortex

segment has vertices Pi, Pi+2 and vortex segments Pi, Pi+1 and Pi+1, Pi+2. Then the

three vertices are used to evaluate the radius of curvature of the segment Pi, Pi+2

and the corresponding subtended angles. Then Eqn. 3.24 is used to evaluate the
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self induced velocity at Pi by using just the one term corresponding to the vortex

segment Pi, Pi+1. Then the self induced velocity will be

qself =
1

8πR

(

Γi

[

log

(

8R

ai

tan
βi

4

)

+
1

4

])

(3.25)

3.2.3 Numerical Implementation

For ease of numerical computation, Eqn. 3.23 can be modified to obtain the induced

velocity in the three dimensional space. Let ~r1 and ~r2 be the vectors from the field

point P to the vertices of the vortex segments 1 and 2 respectively as shown in Fig.

3.6. Let ~r0 be the vector connecting the vertices 1 and 2. Then, it can be seen that

d =
|~r1 × ~r2|

|~r0|

cos β1 =
~r0 · ~r1

|~r0||~r1|

cos β2 =
~r0 · ~r2

|~r0||~r2|
(3.26)

and the velocity ~q1,2 is normal to the plane created by the point P and the vertices 1

and 2, and is given by
~r1 × ~r2

|~r1 × ~r2|

Thus the induced velocity is given as

~q1,2 =
Γ

4π

~r1 × ~r2

|~r1 × ~r2|2
~r0 ·

(

~r1

|~r1|
−

~r2

|~r2|

)

(3.27)

The self induced velocity is determined using the following equations. Let Pi−1 =

(xi−1, yi−1, zi−1), Pi = (xi, yi, zi) and Pi−1 = (xi−1, yi−1, zi−1) be the vertices on

the curved vortex filament and we need to determine the self induced velocity of the

curved vortex at Pi. Let the vortex segment Pi−1, Pi+1 have a constant circulation
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Γ around it and a constant core radius of ai. Then the self induced velocity at Pi,

~qi = (ui, vi, wi) is given as

ui = nxF

vi = nyF

wi = nzF (3.28)

where

nx = (yi−1 − yi)(zi − zi+1) − (zi−1 − zi)(yi − yi+1)

ny = (zi−1 − zi)(xi − xi+1) − (xi−1 − xi)(zi − zi+1)

nz = (xi−1 − xi)(yi − yi+1) − (yi−1 − yi)(xi − xi+1)

F = [Γ(log e1 + 1/4) + Γ(log e2 + 1/4)] /b

b = 8πR
[

n2

x + n2

y + n2

z

]1/2

e1 =
8Rf

ai

e2 =
8Rg

ai

(3.29)

The radius of curvature R is given as

R =
Li−1Liδi

[4L2
i−1

L2
i − (L2

i−1
+ L2

i − δ2
i ))]

2/3
(3.30)

Li =
[

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2
]1/2

δi =
[

(xi+1 − xi−1)
2 + (yi+1 − yi−1)

2 + (zi+1 − zi−1)
2
]1/2

f =







(

2R −
√

4R2 − L2
i−1

)

/Li−1, for L2
i−1 ≤ δ2

i + L2
i

(

2R +
√

4R2 + L2
i−1

)

/Li−1, for L2
i−1 ≥ δ2

i + L2
i

g =







(

2R −
√

4R2 − L2
i

)

/Li, for L2
i ≤ δ2

i + L2
i−1

(

2R +
√

4R2 + L2
i

)

/Li, for L2
i ≥ δ2

i + L2
i−1
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Now, the induced velocity at any point in space, P due to a line vortex can be deter-

mined.

3.2.4 BEM formulation for line vortex/hydrofoil interaction

Let the velocity induced by a line vortex at the hydrofoil panel control points be

~Uvort and as mentioned earlier, let the inflow velocity to the hydrofoil be ~Uin. Then

the 3D BEM formula for the hydrofoil can be modified from Eqn. 3.16 as shown

2πφ =

∫ ∫

SB

[

φ
∂

∂n

1

R
−

[(

−~Vin + ~Vwk

)

· ~n
] 1

R

]

+

∫ ∫

SW

∆φW
∂

∂n

1

R
dS (3.31)

Once, the perturbation potential is determined on the foil surface panels, the pertur-

bation velocity on the foil surface is determined as

2π∇φ =

∫ ∫

SB

[

φ∇
∂

∂n

1

R
−

∂φ

∂n
∇

1

R

]

+

∫ ∫

SW

(∆φW )∇
∂

∂n

1

R
dS (3.32)

After the perturbation velocity ~qpert = ∇φ on the foil surface is determined, the total

velocity on the foil surface is determined as

~q = ~qpert + ~Vin (3.33)

Then the pressure coefficient on the foil surface is determined as

CP = 1 −
|~q|2

|~Vin|2
(3.34)

Once the problem for the hydrofoil under the influence of a line vortex is solved, the

total velocity at the line vortex is evaluated. This includes the inflow velocity and

the velocity induced by the hydrofoil and its wake, ~Vrud.

~Vtot = ~Vin + ~Vrud (3.35)
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Then the vortex locations are convected in time ∆T to get the new vortex locations

as

~Xnew = ~Xold + ~Vtot∆T (3.36)

3.3 Propeller flows as lifting line flows

The lifting line method approximates the propeller blade and its trailing wake to

line vortices with a circulation around them. The propeller blade can be considered

as a lifting surface with some distribution of bound and free vortex sheet strength.

In the limiting case of vanishing chord length of the lifting surface, the propeller

blade reduces to a concentrated radial vortex line with circulation Γ(r), for each

blade. Thus we can approximate the whole system of a rotating propeller to a set of

concentrated radial vortex lines with circulation Γ(r), rotating with angular velocity

ω about a common axis (which is taken as the x-axis in this case). Ideally, the lifting

lines start at a hub radius rh and extend to the maximum propeller radius R. The

lifting line system with the lifting line and its wake is show in Fig. 3.8.

Thus, there are Z lifting lines, symmetrically placed about the axis of rotation, repre-

senting the individual blades of a Z bladed propeller. We can assume that the lifting

line experiences an inflow, ~Vin(r) = (Va(r), Vt(r)) , where Va(r) is the axial inflow

and Vt(r) is the tangential inflow. Though a radial inflow component, Vr(r), exists,

the approximation of a propeller to a lifting line system makes it difficult to capture

this effect on the lifting line. Also let us assume that the lifting line has a circulation

distribution Γ(r) on it. An important part of solving the problem for a lifting line is

determining the strength and the position of the free vorticity, γf(r). The strength
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can be determined from Kelvin’s theorem as

γf(r) = −
∂Γ(r)

∂r
(3.37)

The free vortex filament of the wake is assumed to follow the streamlines of the

undisturbed flow so that each free vortex filament follows a helical path of the pitch

given as follows:

P (r) = 2πr tan β(r) (3.38)

where β(r) is the pitch angle at radius r

β(r) = tan−1
Va(r)

ωr + Vt(r)
(3.39)

where ω is the rotational velocity of the lifting line. The presence of the wake of

the lifting line alters the flow field in the vicinity of the lifting line and its wake.

Let this total flow field be denoted as ~Vtot. This flow field consists of the inflow

to the lifting line system and the velocity induced by the lifting line and its wake,
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~Vwk = (uwk, vwk, wwk). Thus, the total flow field is given as:

~Vtot = ~Vin + ~Vwk (3.40)

Hence, for any calculations involving the lifting line and its wake, it is important to

align the free vortex wake with the total flow.

~Γ × ~Vtot = 0 (3.41)

3.4 Lifting line wake alignment

To solve the problem of a lifting line, it is important to align the free vortex wake

with the flow, so that the force free condition on the free vortex wake is satisfied

as shown in Eqn. 3.41. A simple technique of the lifting line wake alignment is

employed for satisfying the force free condition. This problem is solved for a single

lifting line system with zero hub radius. The lifting line and the wake systems are

shown in Fig. 3.8. The lifting line is assumed to have constant circulation along

the radial distance. The tip vortex is shed from the tip of the lifting line as shown

in Fig. 3.8. In order to simplify the problem, the wake is considered to have two

components. The initial part or the transition wake that will be aligned with the

flow. The pitch of this wake might not be constant, depending on the velocity ~Vtot

and could vary with the flow at the wake locations. The second part or the ultimate

wake is assumed to be of a constant pitch and is assumed to extend for a longer

length. The circulation is closed by a similar lifting line at the end of this wake,

but with a circulation opposite to that of the actual lifting line. Then both the lifting

lines are joined to complete the circulation. The lifting line, the wake and the closing

vortex components are all assumed to have the same circulation.
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Let the coordinates of the transition wake to be aligned be ~X = (x, y, z) Initially,

the lifting line is assumed to be under the influence of a constant axial inflow, Va

and a constant tangential inflow, ωR. Thus the initial shed vortex from the tip of the

lifting line is a helix with a constant pitch given as

P = 2πR tan β (3.42)

and a constant pitch angle

tanβ =
Va

Rω
(3.43)

Assume an angular coordinate θ, to define the helical wake. Thus the initial constant

pitch helical wake coordinates are given as:

x = Rθ tan β

y = R cos(θ + δk) (3.44)

z = R sin(θ + δk)

δk is the angle of the lifting line for which the wake is being evaluated.

The transition and the ultimate wake are discretized into elements by the discretized

angular coordinate ∆θ. Let us denote the ith point of the helical wake at the tth

iteration step by the coordinates ~X t
i = (xt

i, y
t
i , z

t
i). Then, the ith vortex element of

the helical wake has the vertices ~X t
i and ~X t

i+1, i.e, (xt
i, y

t
i, z

t
i) and (xt

i+1, y
t
i+1, z

t
i+1).

The the initial coordinates of the discretized constant pitch helical wake is given as

xt
i = R(i − 1)∆θ tanβ

yt
i = R cos [(i − 1)∆θ + δk] (3.45)

zt
i = R sin [(i − 1)∆θ + δk]
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If we denote the time step in which each vortex segment is shed from the lifting line

tip to form the constant pitch helical wake by ∆t, then this time step can be written

as

∆t =
∆θ

ω
(3.46)

Then the initial coordinates of the transition wake are given as

x0

i = x0

i−1 + Va∆t

y0

i = R cos [(i − 1)∆θ)] = y0

i−1 − ωz0

i−1∆t (3.47)

z0

i = R sin [(i − 1)∆θ)] = z0

i−1 + ωy0

i−1∆t

The ultimate wake is also created in a similar way.

Once the helical wake with the constant pitch angle is created, the alignment pro-

cess is done as follows. The wake vortex elements are assumed to be straight line

segments of constant circulation. Using Eqn. 3.27, the induced velocity ~Vwk at each

wake element vertex is determined. This induced velocity is composed of the veloc-

ity induced by the lifting line, the transition wake, the ultimate wake and the vortex

segments, including the self induced velocity of the vortex segments completing the

circulation. This induced velocity is added to the inflow velocity, ~Vin, to get the total

velocity field at the wake element vertices, ~Vtot = (utot, vtot, wtot). Once the total

velocity is determined, the new location of the wake is determined by convecting

each ith point of the wake at iteration step t with the velocity of the (i − 1)th point

at iteration step t − 1 in time ∆t. This can be done because the tip of the lifting line

is fixed, and at all times the wake is shed from this point only. This process can be

shown in Fig. 3.9. Thus the wake coordinates at iteration step t are given as
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xt
i = xt−1

i−1
+ (ut−1

i−1
)tot∆t

yt
i = yt−1

i−1
+ (vt−1

i−1
)tot∆t

zt
i = zt−1

i−1
+ (wt−1

i−1
)tot∆t (3.48)

However, this scheme could not converge to the aligned wake solution. Rather than

demonstrating the expected slip stream contraction, this scheme resulted in a wake

that expanded with the iteration steps.

This scheme requires a very small time step size, ∆t, and hence a very small angular

coordinate, ∆θ. This increases the computational time as the number of wake ele-

ments increases, thus requiring the vortex induced velocity to be evaluated for more

number of elements. A higher order time stepping scheme can be used to increase

accuracy. But this would again increase the computational time because the vortex
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induced velocities are to be evaluated at each of the fractional time step, depending

on the order of the time stepping scheme. This can be avoided by convecting the

wake points as follows. Equation 3.48 displays that the wake points are convected

along a vector in the direction of the total velocity, ~Vtot. Thus, the discretization

causes the wake points to follow a straight path rather than the actual curved path of

the slip stream. This is avoided by the scheme given below. In this scheme, the wake

points are first convected along the slipstream of the wake and then moved with the

induced velocities in time ∆t to get the new wake locations.

Thus, the coordinates of the new wake position which is aligned with the total flow

is given as

xt
i = xt−1

i−1
+ (ut−1

i−1
)tot∆t

yt
i = yt−1

i−1
cos ∆θ − zt−1

i−1
sin ∆θ + (vt−1

i−1
)wk∆t

zt
i = zt−1

i−1
cos ∆θ + yt−1

i−1
sin ∆θ + (wt−1

i−1
)wk∆t (3.49)

It can also be proved that Eqn. 3.48 is an approximation to Eqn. 3.49. for the

limiting case of ∆θ → 0. The proof is given below.

At iteration step (t− 1), let the radius of the (i− 1)th point be Ri−1 and the angular

coordinate be θi−1. Then,

yt−1

i−1
= Rt−1

i−1
cos θi−1

zt−1

i−1
= Rt−1

i−1
sin θi−1 (3.50)

From Eqn. 3.49, the y and the z coordinates at iteration step t for the ith wake

element are obtained by first convecting the point about a cylinder with radius Rt−1

i−1
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and then convecting it with the wake induced velocities, (~V t−1

i−1 )wk. Thus,

yt
i = Rt−1

i−1
cos θi−1 + ∆θ + (vt−1

i−1
)wk∆t

zt
i = Rt−1

i−1
sin θi−1 + ∆θ + (wt−1

i−1
)wk∆t (3.51)

Using standard sine and cosine expansions, we get

yt
i = Rt−1

i−1 cos θi−1 cos ∆θ − Rt−1

i−1 sin θi−1 sin ∆θ + (vt−1

i−1)wk∆t

zt
i = Rt−1

i−1 sin θi−1 cos ∆θ + Rt−1

i−1 cos θi−1 sin ∆θ + (wt−1

i−1)wk∆t (3.52)

From Eqns. 3.50 and 3.52, we obtain the coordinates of the wake at the next

iteration step, which are similar to Eqn. 3.49

yt
i = yt−1

i−1
cos ∆θ − zt−1

i−1
sin ∆θ + (vt−1

i−1
)wk∆t

zt
i = zt−1

i−1
cos ∆θ + yt−1

i−1
sin ∆θ + (wt−1

i−1
)wk∆t (3.53)

In the limit, ∆θ → 0, cos ∆θ → 1 and sin ∆θ → ∆θ = ω∆t. Thus Eqn. 3.52 can

be written as

yt
i = yt−1

i−1 − zt−1

i−1ω∆t + (vt−1

i−1)wk∆t

= yt−1

i−1 + (vt−1

i−1)tot

zt
i = zt−1

i−1
+ yt−1

i−1
ω∆t + (wt−1

i−1
)wk∆t

= zt−1

i−1
+ (wt−1

i−1
)tot∆t (3.54)

where, the velocities (vt
i)tot and (wt

i)tot are obtained using a transformation of the

inflow tangential velocity in the y − z plane and its addition to the velocity induced

by the wake in the y − z plane. The direction of the velocities in the y − z plane is

shown in Fig. 3.10 The total velocities in the y − z plane can also be obtained as
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(vt
i)tot = (vt

i)wk − ωzt
i

(wt
i)tot = (wt

i)wk + ωyt
i (3.55)

Thus we end up with Eqn. 3.48. Comparing Eqn. 3.54 with Eqn. 3.48, the additional

term is the vortex induced velocity which causes the wake to change its position.

Thus we can get the coordinates of the updated wake position. Thus, this scheme

includes the effect of discretization, which would otherwise have been lost in the

scheme given by Eqn. 3.48, and hence, requiring more computational complexity.

This process is continued till the L2 norm of the error | ~∆r| between ~X t
i and ~X t−1

i

reaches a specified value.

The following parameters are determined at each vertex of the wake element. The
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error at iteration step t, compared to the wake location at iteration step t − 1 is

computed as

| ~∆Xerr|
t
i = | ~X t

i −
~X t−1

i | (3.56)

The angle between the velocity vector (~V t
i )tot and the direction vector of the wake

at that point ~∆r
t

i is determined as

αt
i = sin−1

|~V t
i × ~∆r

t

i|

|~V t
i ||

~∆r
t

i|
(3.57)

The L2 norm of the error | ~∆Xerr|
t
i is determined as

L2(| ~∆Xerr|
t) =

√

∑

i

(| ~∆Xerr|ti)
2 (3.58)

In order to obtain the converged wake geometry, a convergence criteria is imposed

on the L2 norm of the error (Eqn. 3.58). Once the convergence criteria is satisfied,

the angle αi at each tip vortex segment tends to 0, thus satisfying the force free wake

condition (Eqn. 3.41). Thus, the aligned tip vortex geometry of the lifting line is

obtained.

3.5 Lifting line tip vortex/hydrofoil interactions

The 3D BEM formulation for the line vortex/hydrofoil interaction is coupled with

the wake alignment procedure to evaluate the effect of the lifting line tip vortex wake

on the rudder. The lifting line system with the rudder is shown in Fig. 3.11.

The Lifting line tip vortex wake/rudder problem is coupled and solved as following:

1. Initially, the tip vortex wake is assumed to be a helical wake with a constant

pitch. The coordinates of the tip vortex wake, ~X0
i are created. The inflow ve-
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Figure 3.11: Lifting line tip vortex/rudder system.

locity to Lifting line and the rudder is assumed to be a constant axial velocity,

Va and the Lifting line rotates with a constant angular velocity ω.

2. The hydrofoil surface is discretized into panels and the velocity induced by

the wake on the panel control points, ~Vwk is obtained.

3. The problem of the hydrofoil under an inflow ~Vin + ~Vwk is solved using 3D

BEM formulation as shown in Eqn. 3.31

4. Then the velocity induced by the hydrofoil and its wake, ~Vrud at the tip vortex

wake vertices ~Xi is determined.
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5. The tip vortex wake is aligned to its new vertices ~X t+1

i = (xt+1

i , yt+1

i , zt+1

i )

using the total velocity (~Vtot)
t
i at the vertices ~X t

i = (xt
i, y

t
i, z

t
i), where,

(~Vtot)
t
i = (~Vin + ~Vwk + ~Vrud)

t
i (3.59)

using Eqn. 3.49.

6. The error | ~∆Xerr|
t+1

i and its L2 norm is determined. If the L2 norm of the

error satisfies the set convergence criteria, then the aligned wake is obtained,

the problem for the hydrofoil is solved, the pressure distribution on the hydro-

foil is determined and the complete solution is obtained. If the convergence

criterion is not satisfied, then the processes from step 2 is repeated.

7. Once the solution at a particular lifting line angle is obtained, the lifting line

is rotated by δk to its new position and the above steps repeated. However, the

initial geometry of the tip vortex wake ~X0
i is obtained by rotating the aligned

tip vortex geometry from the previous lifting line location by δk. This speeds

up the convergence process and the tip vortex wake is aligned faster.
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Chapter 4

Vortex/Hydrofoil Interactions Using FLUENT

The most important aspect of understanding and solving propeller tip vortex rudder

interactions is to understand and track the evolution of this tip vortex through space

and time. CFD tools can help us to model the interaction between the tip vortex and

rudder and can also help us track the evolution of the tip vortex. But the complexity

and the size of the domain makes the CFD modeling quite complex and difficult.

The size of the domain requires a large grid to completely capture the fluid dynamics

taking place in the domain. Also, the size of the tip vortex compared to the rudder

span or chord is extremely small. This requires a dense grid in order to fully capture

the flow dynamics of the vortex.

In this section, a commercial CFD tool, FLUENT, is used to model and understand

the vortex dynamics. The first section deals with the 2D modeling of a Rankine

vortex in a uniform flow, and the various issues involved in the modeling process. In

the next section, the 2D vortex model is extended to a 3D space in the presence of

a foil, and the pressure distributions on the foil as the vortex passes over the foil are

obtained.
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4.1 2D Vortex in uniform flow

A study of the dynamics of a two dimensional vortex in a uniform flow will give an

insight into the modeling nuances of a three dimensional vortex in the presence of a

hydrofoil. The ease of modeling a 2D vortex makes it a viable problem to study the

various modeling issues, such as the grid size, time step size, the viscous model to

be used and the correct order of the solution to be used. A Rankine vortex has the

following tangential velocity distribution:

Vt =























Γ

2πr
for r ≥ r0

Γ

2πr2
0

r for r ≤ r0

where r0 is the radius of the vortex core and r is the radial distance from the center

of the vortex core to the field point. The tangential velocity distribution is as shown

in Fig. 4.1.
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Figure 4.1: Tangential velocity distribution for a Rankine vortex.

42



X

Y

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

PSfrag replacements

I
n
f
lo

w

O
u
tf

lo
w

~Vin = (uin, vin)

Top Wall

Bottom Wall

Figure 4.2: The domain and the grid for a 2D vortex in uniform flow for 5 grid points
across the vortex core.

The domain of the problem is a simple rectangular domain with quadrilateral cells

as shown in Fig. 4.2. The grid size is decided based on the number of grid points

available within the vortex core, to effectively capture the vorticity of the initial

vortex. The grid size shown in Fig. 4.2 is based upon five grid points within the

vortex core.

FLUENT solves the RANS equations over the grid specified. A user defined initial-

isation function is used to initialize the vortex in the uniform flow in the grid. For all

the solutions of the 2D runs, a Rankine vortex with the following characteristics is

used. All distances are non dimensionalised using a reference length D = 1.0 m, the

velocities by a reference velocity Va = 1.0 m/s and time by
D

Va
. The vortex strength

is non dimensionalized as Γ∗ =
Γ

VaD
. The non dimensional variables parameters

for the problem are
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• Vortex core radius r∗o = ro/D = 0.04

• Circulation constant Γ∗ = 2π

• The vortex is initialised at (x, y) = (−0.25, 0) as shown in Fig. 4.2

The details of the FLUENT solver that is used to solve the problem of the 2D vortex

in a uniform flow are as given below:

1. A 2 dimensional, cell based implicit solver is used.

2. The solver is unsteady and 2nd order implicit in time.

3. A laminar viscous model is used.

4. The fluid is water with kinematic viscosity = 10−6 m2/s.

5. Reynolds number = 5 × 106.

6. Boundary conditions for the grid shown in Fig. 4.2 are

• Left face, Inflow velocity, u∗
in = uin/Va = 5.0, v∗

in = vin/Va = 0.0.

• Right face, Outflow condition.

• Top face, Wall with slip condition, i.e specified shear stress = 0 Pa in

both x and y directions.

• Bottom face, Wall with slip condition, i.e, specified shear stress = 0 Pa

in both x and y directions.

7. A user defined initialization function is used to initialize the vortex in a uni-

form flow.
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8. The discretization scheme is:

• ‘Standard’ discretization scheme for pressure.

• ‘Second order upwind’ scheme for momentum.

9. The ‘SIMPLE’ Pressure-Velocity coupling scheme is used.

10. The time step size used for the unsteady scheme is ∆t = 0.001 sec.

11. The convergence criteria for the solution is set as:

• Continuity = 10−5.

• X velocity = 10−5.

• Y velocity = 10−5.

Let ∆x and ∆y be the grid sizes in x and y directions. As shown in Fig. 4.2, the

grid in the vicinity of the initial location of the vortex consists of square cells of

equal ∆x and ∆y. The results of the movement of a 2D vortex in a uniform flow are

presented in Fig. 4.3. The grid size is based on
∆x

r0

=
∆y

r0

= 10, implying 10 grid

points across the vortex core.

The vorticity contour plots are a good representation of the location of the vortex in

space at different times. The vorticity contour plots are shown for every t = 50∆t =

0.05 sec. The vortex travels a distance of X = uint = 0.5 m in time t.
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Figure 4.3: Vortex positions through vorticity contours shown at times (a) t = 0,
(b) t = 50∆t, (c) t = 100∆t, (d) t = 150∆t, (e) t = 200∆t and (f) t = 250∆t.
∆t = 0.001 sec and uin = 5 m/s.
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The vorticity contours shown in the 2D space in Fig. 4.3 are a good measure of the

location of the 2D vortex in space at a certain time t. As compared to the initial

vortex at t = 0, the subsequent vortices show a vortex core spreading and the dissi-

pation of vorticity, which is undesired. It can be seen from Figs. 1.1 and 1.2 that the

tip vortex is a tightly bound vortex with little or no dissipation, even when the vortex

has travelled the length of the rudder, at the trailing edge. This makes CFD models

undesirable to study such phenomenon. From Fig. 4.3 it can also be noticed that the

vortex in a uniform flow experiences a normal shift to the streamwise direction. This

is due to the Kutta-Joukowski law, which states that a circulation in a uniform flow

induces a lift force on the vortex which acts normal to the flow direction. Also, a

secondary vortex can be seen along with the initial vortex. This happens because the

vortex is initialised quite close to the inflow boundary, where the boundary condition

creates a new vorticity.

Several studies were done in order to gain a better understanding of the vortex model

to be used to solve the vortex hydrofoil interactions. The following runs were done

to understand the impact of the spatial discretization on the vortex strength through

time. Different grids were used based on
r0

∆x
= 2,

r0

∆x
= 5,

r0

∆x
= 10 and

r0

∆x
=

20, corresponding to 2, 5, 10 and 20 grid points across the vortex core. All the

parameters are same for all the above runs and results are shown for every t =

50∆t = 0.05.
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Figure 4.4: Vorticity contours shown for (a)
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∆x
= 2, (b)

r0

∆x
= 5, (c)

r0
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= 10

and (d)
r0

∆x
= 20 at t = 0. r∗o = 0.02, uin = 5.0 m/s and ∆t = 0.001 sec.
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Figure 4.5: Vorticity contours shown for (a)
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Figure 4.6: Vorticity contours shown for (a)
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Figure 4.7: Vorticity contours shown for (a)
r0

∆x
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and (d)
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= 20 at t = 100∆t. r∗o = 0.02, uin = 5.0 m/s and ∆t = 0.001 sec.
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From Fig. 4.7, the effect of the spatial discretization can be seen. These results

show that the number of points required to initially define the vortex core plays an

important role in the conservation of vorticity as the vortex convects downstream.

The numerical scheme already has a numerical dissipation associated with it, which

results in information being lost, which in this case is the strength of the vortex as

it convects. Apart from the numerical dissipation, the spatial discretization also has

an effect on the dissipation of vorticity as seen from Fig. 4.7.

The cases for
r0

∆x
= 2 and 5 show more dissipation when compared to

r0

∆x
= 10

and 20, where the vorticity magnitudes are almost the same, as is evident from the

contour plots. Using these results, it was decided to use
r0

∆x
= 10 to model the

vortex core in a three dimensional field in the presence of a foil.

The order of the unsteady time stepping scheme also plays an important role in

controlling the numerical dissipation present in the solver. The vorticity magnitudes

are compared for a first and a second order implicit unsteady scheme. The vortex

core for both cases has a radius of r∗o = 0.02, the inflow velocity uin = 5 m/s,

the number of points along the vortex core
ro

∆x
= 10 and the time step size ∆t =

0.001 sec.

From Fig. 4.8, it can be seen that the first order implicit scheme has an additional

numerical dissipation, other than the inherent numerical dissipation present in the

solver. It can be seen that the second order implicit scheme conserves vorticity

better than the first order implicit scheme. Hence, the second order implicit scheme

is used to model the three dimensional vortex hydrofoil interactions.
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Figure 4.8: Comparison of vorticity magnitudes at (a) t = 50∆t, (b) t = 100∆t and
(c) t = 150∆t between 1st and 2nd order implicit unsteady scheme.
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It is important to understand the effect of turbulence modeling on the dissipation

of vorticity as the vortex convects downstream. A study was done to compare the

vorticity magnitudes as the vortex convects downstream between a laminar model

and a k− ε turbulence model. The details of the FLUENT run are as before for both

the runs. For the k − ε model, the additional details of the run are

• Turbulence kinetic energy = 0.0361 m2/s2

• Turbulence dissipation rate = 0.00161 m2/s3

The vorticity contours are shown at every t = 50∆t, where ∆t = 0.001sec in Figs.

4.9 to 4.11.

As expected, the turbulence model shows more dissipation in the vorticity magnitude

as compared to the laminar model. This happens because the turbulence models have

an inherent dissipation term which tends to dissipate the vorticity.
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Figure 4.9: Vorticity contours shown at t = 50∆t for Laminar and k − ε models.
∆t = 0.001sec.
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Figure 4.10: Vorticity contours shown at t = 100∆t for Laminar and k− ε models.
∆t = 0.001sec.
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Figure 4.11: Vorticity contours shown at t = 150∆t for Laminar and k− ε models.
∆t = 0.001sec.
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4.2 3D Vortex/hydrofoil interactions in a uniform flow
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Figure 4.12: Domain for 3d vortex/hydrofoil interactions.

The domain for a 3D vortex hydrofoil model is as shown in Fig. 4.12. The grid in

the x − y plane, through the mid of the domain at z = −0.25 and the grid in the

x − z plane at y = 0.05 is shown in Fig. 4.13

The grid size was determined based on
r0

∆x
= 10. In order to reduce computational

time, a denser grid was clustered around the region where the vortex is being ini-

tialised and in the path of the region. The main priority in this model was to capture

the pressure distributions on the hydrofoil as the vortex approaches the hydrofoil and

passes over it.
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Figure 4.13: The 3D grid in the (a) x− y plane at z = −0.25 and (b) x− z plane at
y = 0.05.
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The run conditions of FLUENT are as given below. As in the case of the 2D problem,

all the variables were non dimensionalized by reference variables, as mentioned

earlier.

1. The number of cells in the domain = 1.8 million.

2. A three dimensional, cell based implicit solver is used.

3. The solver is unsteady and 2nd order implicit in time.

4. A laminar viscous model is used.

5. Reynolds number = 106.

6. The fluid used is water with viscosity = 10−6 m2/s.

7. Boundary conditions for the grid shown in Fig. 4.12 are:

• Inflow velocity, uin = 1.0 m/s, vin = 0.0 m/s and win = 0.0 m/s.

• Right face, Outflow condition.

• The top, bottom and side faces are ‘Wall’ boundary conditions with slip

condition, i.e, specified shear stress = 0 Pa, in x, y and z directions is

applied.

• On the hydrofoil surface, ‘Wall’ boundary condition with no slip condi-

tion, i.e, velocity on the foil surface = 0 m/s is applied.

8. A user defined initialization function is used to initialize the vortex in a uni-

form flow.

9. The discretization scheme used is:
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• ‘Standard’ discretization scheme for pressure.

• ‘Second order upwind’ scheme for momentum.

10. The ‘SIMPLE’ Pressure-Velocity coupling scheme is used.

11. The time step size used for the unsteady scheme is ∆t = 0.001 sec.

12. The convergence criteria for the solution is set as:

• Continuity = 10−5.

• X velocity = 10−5.

• Y velocity = 10−5.

• Z velocity = 10−5.

The vortex locations is showed in Fig. 4.14 through the contour plots of vorticity in

the x − y plane, passing through the middle of the vortex core at various time steps.
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Figure 4.14: Vorticity contours shown in the x − y plane at (a) t = 0, (b) t =
100∆t, (c) t = 200∆t, (d) t = 300∆t, and (e) t = 400∆t. ∆t = 0.001 sec and
uin = 1.0 m/s.
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Figure 4.15: Contours of CP on the foil surface shown at times (a) t = 100∆t,
(b) t = 200∆t, (c) t = 300∆t, (d) t = 400∆t and (e) t = 500∆t.

The contours of the pressure distribution CP are shown on the foil surface in Fig.

4.15 at the time steps shown in Fig. 4.14

In Fig. 4.15, it can be seen that the presence of a vortex induces very low pres-

sures on the hydrofoil surface. The location on the low pressures on the foil surface

corresponds to the location of the vortex over the hydrofoil. As seen in Fig. 4.14,
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the vortex core diameter increases to compensate for the viscous dissipation in vor-

ticity in order to conserve circulation. This increase in core diameter also causes

an increased area of the hydrofoil to experience low pressures. This could lead to

the prediction of cavitation over a large area of the hydrofoil due to the vortex. In

reality, the tip vortices impinging on the rudder have a very small diameter when

compared to the rudder span or chord. Also, these vortices do not dissipate much

and they retain the same core size as the tip vortices travel over the rudder. Accu-

rately modeling these small tip vortices requires a denser grid, compared to the grid

of Fig. 4.12, thus increasing the total grid size and the computational time.

The 3D vortex/hydrofoil interaction problem is also solved for a cambered foil. The

details of the solution are similar to those of the symmetric hydrofoil. The domain

used for the model is similar to that shown in Fig. 4.12 for a symmetric foil.

The grid is also shown in the x − y and the x − z plane in Fig. 4.16.
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Figure 4.16: The grid for a vortex/cambered foil interaction shown in the x−y plane.
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Figure 4.17: The grid for a vortex/cambered foil interaction shown in the x−z plane.
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Fig. 4.18 shows the vortex locations at different times through vorticity contour

plots in the x − y plane passing through the middle of the vortex core.
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Figure 4.18: Vorticity magnitude in x-y plane for (a) t = 0, (b) t = 150∆t, (c)
t = 300∆t and (d) t = 450∆t. ∆t = 0.001 and Uin = 1.0.

From Fig. 4.18, it can be seen that the vortex dissipates more rapidly than in the case

of the symmetric hydrofoil. Even before the vortex reaches the mid chord region, it

has dissipated. However at t = 150∆t, it can be seen that the vortex has split into

two parts and the lower part of the vortex seems to move faster than the upper part.

This happens because the total velocity in the field around a cambered hydrofoil,
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when the foil is at 0o angle of attack induces a lift force. This causes the velocity

below the cambered foil to be higher than the velocity on the upper side of the foil

and thus the lower part of the vortex moves faster than the upper part of the vortex.

The pressure contours on the cambered foil surface at the various vortex locations at

different times are shown in Fig. 4.19.
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Figure 4.19: Contours of CP over the foil surface at (a) t = 150∆t, (b) t = 300∆t
and (c) t = 450∆t.

The pressure distributions on the cambered foil again show low pressures in the

vicinity of the hydrofoil, as is shown in Fig. 4.19. Also, it can be seen that the

pressure distributions correspond to the vortex locations.
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Chapter 5

Vortex/Hydrofoil Interactions Using PROPCAV

In the previous chapter, the results were shown for 3D vortex/hydrofoil interactions

using a commercial CFD solver, FLUENT. Using a CFD model for vortex dynamics

and vortex/hydrofoil interactions has several backdrops. The necessity for meshing

the entire domain of the problem makes it cumbersome to work with. Complex flow

domains and need for fine grid sizes could affect the computational time for the flow

solver. Also, various studies are needed to study the numerical dissipation and effort

is required to control this dissipation.

Thus, a BEM based solver would effectively help to solve this problem. Issues

such as grid size and meshing the domain do not arise because BEM requires only

the boundary of the domain to be meshed. Also, once we solve for the unknown

potential over the boundary, it is easy to evaluate the properties in the field as just

summation of the solved values on the domain. Since BEM formulation is based on

the assumption that the flow is inviscid and a line vortex representation is used, it

would not be required to deal with issues such as vorticity dissipation.

Our main goal here is to model, study and understand the effect of tip vortices on

a rudder. Several observations and experiments have shown that in reality these
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vortices do not dissipate much and manage to maintain the core geometry through

the extent of time when these vortices travel over the rudder. Hence, a BEM based

formulation is used to model line vortex/hydrofoil interactions.

In the first section, the results are shown for a line vortex/hydrofoil interaction in-

cluding the pressure distribution on the hydrofoil. In the next section, convergence

studies done, with respect to the hydrofoil discretizations are presented.

5.1 Line Vortex/Hydrofoil interactions using PROPCAV, a BEM
solver

It is easier to solve the vortex/hydrofoil interaction problem using a BEM solver

as the effect of the vortex on the hydrofoil is seen in terms of the change in the

inflow to the hydrofoil. This only changes the right hand side of the matrix system,

i.e the source strengths and then solves for the potential on the hydrofoil. Once

the potential and the velocities on the foil surface are known, the total velocity at

the vortex locations is evaluated to convect the vortex in time. This total velocity

includes the uniform inflow and the velocity induced by the hydrofoil and its wake.

The domain for the vortex/hydrofoil interaction model is shown in Fig. 5.1. The

hydrofoil is shown with the line vortex at the initial position and after some time.

A numerical limit is defined around the hydrofoil inorder to prevent the vortex pen-

etrating the hydrofoil. This happens because the velocities induced in the field by

the hydrofoil very close to the foil panels are not accurate. This arises due to the

constant distribution of sources and dipoles on the foil panels. The numerical limit

LT is a specified distance vertical to the hydrofoil panels as shown in Fig. 5.2.
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The vortex movement towards the hydrofoil is shown in Fig. 5.3. The parameters

for the results shown are as follows.

The hydrofoil is a NACA66 hydrofoil section with the following dimensions. All

the parameters shown are non dimensional. The distances are non dimensionalized

using the span of the hydrofoil, D = 1.0 m and the velocities are non dimensional-

ized using the inflow velocity, Va = 1.0 m/s. The vortex strength is non dimension-

alized as Γ∗ =
Γ

VaD
and time as t∗ =

t

D/Va

.

• Chord length of the foil, C∗ = C/D = 0.4

• Maximum thickness of the foil, t∗o = to/D = 0.05

• foil discretization = 80 × 40(chord×span)

• Foil span length = D∗ = D/D = 1.0

• Inflow velocity, V ∗
a = Va/Va = 1.0

The line vortex is discretized into 80 vortex elements. The vortex strength, Γ∗ =

0.05 and the numerical limit specified is L∗
T = LT /D = 0.001. The non dimensional

time step size, ∆T = 0.01. The location of the line vortex through time is shown in

Fig. 5.3.
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Figure 5.3: Vortex movement towards the hydrofoil at different times.
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(c) t∗ = 12∆T and (d) t∗ = 18∆T . ∆T = 0.01.

The distribution of CP along the leading edge is shown in Fig. 5.4. From Fig. 5.4,

it can be seen that the pressures on the foil surface drop as the vortex approaches

the foil. The pressure is the lowest for t∗ = 12∆T , as at that time, the vortex is

the closest to the leading edge as seen in Fig. 5.3, when compared to t∗ = 18∆T ,

where the least pressures on the foil surface occur in the areas in the vicinity of the

vortex as shown in Fig. 5.4. The pressure contours on the hydrofoil due to the line

vortex is shown in Fig. 5.5. The contour plots are shown with the corresponding

vortex locations. It can be seen that the low pressures correspond to the areas on the

hydrofoil in the vicinity of the vortex.
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(d) t∗ = 18∆T . ∆T = 0.01.
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5.2 Convergence studies

It is important to understand the effect of the numerical limit LT around the hydrofoil

on the vortex/hydrofoil solution. The solution for vortex/hydrofoil interactions is

obtained for different limits, from L∗
T = 0.001 to L∗

T = 0.01. Figure 5.6 shows

the different vortex locations around the hydrofoil corresponding to the different

numerical limits specified.

In Fig. 5.7, the pressure distribution along the leading edge of the foil is shown for

different values of LT at t∗ = 12∆T and t∗ = 18∆T . As expected, low pressure

values are noticed for the lower values of LT . This happens because smaller values

of LT induce higher velocities due to the vortex on the foil control points. This

increases the inflow to the hydrofoil and thus causes lower pressures.
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Convergence studies were next done for various hydrofoil surface discretizations.

The hydrofoil surface was discretized into N × M panels, where N is the number

of panels in the chordwise direction and M is the number of panels in the spanwise

direction. Figure 5.8 shows the convergence of the pressure distribution on the lead-

ing edge of the foil at t∗ = 12∆T for different spanwise discretizations, M = 10 to

M = 80. The chordwise number of panels are fixed at N = 80.
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Figure 5.8: Convergence of leading edge pressure for the foil discretization shown
in figure legend at t∗ = 12∆T .

The convergence of the pressure distribution on the hydrofoil surface is also shown

in the contour plots of −CP for different M and N = 80, shown in Fig. 5.9 at time

t∗ = 18∆T .
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Figure 5.9: Pressure contours shown on the foil at t∗ = 18∆T for different spanwise
discretizations of the foil: (a) 80×10, (b) 80×20, (c) 80×30, (d) 80×40, (e) 80×50
and (f) 80 × 60.

The convergence of the pressure distribution on the foil is shown through contour

plots of −CP for different N and M = 40, as seen in Fig. 5.10 at time t∗ = 18∆T .

The vortex has a circulation Γ∗ = 0.05 around it and the inflow velocity is V ∗
a = 1.0.
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Figure 5.10: Pressure contours shown on the foil at t∗ = 18∆T for different chord-
wise discretizations of the foil: (a) 20×40, (b) 40×40, (c) 60×40 and (d) 80×40.
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Chapter 6

Lifting Line Wake alignment

In this chapter, a tip vortex is modelled using a lifting line model for propeller flows.

The limiting case of zero thickness of the propeller blade foil section and vanishing

chord length of the blade is a lifting line. A lifting line has a circulation distribution

around it and this makes it easy to model flows related to propellers as the propeller

blade is now approximated by a line vortex.

The alignment process is first applied to a closed vortex ring with a constant circu-

lation around it. The results for a vortex ring are shown in the first section. In the

second section, convergence studies for the vortex ring are presented. The results of

the alignment procedure applied to the tip vortex wake of a lifting line is presented

in the third section. In the last section, convergence studies related to the alignment

process are presented.

6.1 Alignment results for a vortex ring

A vortex ring is a closed line vortex loop with a constant radius of curvature. For

this study, the vortex ring has a constant value of circulation around it. The vortex

ring system in a three dimensional space is shown in Fig. 6.1.
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Figure 6.1: Discretized vortex ring with the direction of motion.

The axis of the ring is oriented in the x direction as shown in Fig. 6.1. The vortex

ring is discretized using line vortex elements. The discretization is based on the

angle subtended at the centre of the vortex ring by the vortex elements. Let the

angular coordinate defining the vortex ring be θ and the discretized coordinate be

∆θ. Then the number of vortex elements, N on the vortex ring is given as

N =
2π

∆θ
(6.1)

The velocity induced by the vortex ring on itself is obtained by adding the velocity

induced by the line vortex elements at each vertex of the vortex elements. Since the

vortex ring has a constant circulation around it, the velocity induced at each vertex

on the ring should be the same. This total induced velocity is in the axial direction

of the vortex ring. Thus in the absence of any flow around the ring, the vortex ring

convects in the axial direction with its own self induced velocity.

Here, the vortex ring is subjected to an axial velocity and hence, the vortex ring

90



moves with a total velocity which is the sum of the axial inflow and the self induced

velocity of the vortex ring. An angular velocity w = π rad/s is defined and the

corresponding time step is defined as ∆T =
∆θ

ω
. The discretized angular coordinate

is ∆θ = 12o and the vortex ring is discretized into N = 30 line vortex elements.

The vortex ring experiences an axial inflow of Va = 1.0 m/s. The convection of the

ring is shown in Fig. 6.2.
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Figure 6.2: Convection of the vortex ring in the axial direction. The location of the
ring is shown for every 10∆T from t = 0 to t = 40∆T .
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6.2 Convergence studies on a vortex ring

At each of vertex of the vortex elements that make the vortex ring, the velocity is

evaluated by summing up the velocity induced by all the line vortex elements in the

ring using Eqn. 3.27. But Eqn. 3.27 cannot be used to evaluate the velocity induced

by the two line vortex elements on either side of a vertex due to the singularity that

arises when the field point is on the line vortex. The induced velocity on a vertex

due to the line vortex elements on either side of it is evaluated using Eqn. 3.28.

Studies were done to evaluate the importance of including the self induced velocity

on the vertices of the vortex ring by the line vortex elements supporting that vertex.

In Fig. 6.3, the axial (X) velocity and the y and z velocities are shown for the

different number of vortex elements on the vortex ring. Results are shown for ∆θ =

12o, 6o, 3o, and 1.5o.
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Figure 6.3: Induced velocity on the vortex ring (a) without and (b) with the self
induced velocity of the vortex elements.

Thus, it can be seen from Fig. 6.3 that the induced axial velocity does not converge

with the number of vortex elements on the vortex ring, N for the case where the

self induced velocity of the vortex elements are not included. On the other hand,

the convergence of the axial velocity with respect to N can be seen when the self

induced velocity of the vortex elements is included. Also, as expected, the V and W

velocities are zero for both cases.
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6.3 Alignment Results for Lifting Line Tip Vortex
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Figure 6.4: Lifting line system with the tip vortex wake.

The alignment technique, as given in Eqn. 3.49 is applied to the tip vortex wake

of a lifting line. The lifting line system with the transition wake, which is aligned,

the ultimate wake which is a constant pitch wake and the vortex closing segments is

shown in Fig. 6.4.

Using Eqns. 3.27 and 3.28, the total velocity induced by the lifting line, the transition

wake, the ultimate wake, the hub vortex and the closing lifting line, ~Vwk is evaluated

at each vertex of the transition wake. The inflow velocity ~Vin is added to ~Vwk to get

the total velocity ~Vtot with which the tip vortex wake is aligned. The tip vortex wake

is aligned using Eqn. 3.49. The alignment results are shown below.

All the velocities are made non-dimensional by the axial inflow velocity Va =

1.0 m/s and the distances and the coordinates are made non-dimensional by the

radius of the lifting line, R = 1.0 m. The vortex strength, Γ is non dimension-
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alised as Γ∗ =
Γ

VaR
. All the parameters of the alignment process presented in the

subsequent texts are non-dimensional.

The lifting line has a radius R∗ = 1.0. The inflow velocity components are V ∗
a =

1.0 and V ∗
t = ω∗R = π, with the angular velocity ω∗ =

ωR

Va
and ω = π rad/s

corresponds to an advance coefficient, J =
Va

nD
= 1.0, where D = 2R and ω =

2πn. The results are shown in Fig. 6.5 for a tip vortex wake with 4 transition wake

revolutions and 20 ultimate wake revolutions. The discretized angular coordinate

∆θ = 12o and the number of vortex elements along the transition wake , N =

4
360o

12o
= 120. The time step for the alignment procedure ∆T ∗ =

∆θ

ω∗
. The lifting

line vortex strength and the strength of the tip vortex wake is Γ∗ = 0.1. Figure 6.5

shows the results for the alignment process. The initial wake and the aligned wake

geometry is shown in the x − y plane.
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Figure 6.5: Initial wake geometry, aligned wake geometry at iteration step tc and
wake geometry at tc − 1 is shown for Γ∗ = 0.1.
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Since the presence of a propeller accelerates the flow, the slipstream of the propeller

contracts to account for the change in the control volume of the fluid. With relation

to a lifting line system, this can be noticed as the contraction of the lifting line wake.

In Fig. 6.5, this can be seen as the reduction in the radius of the aligned tip vortex

wake.

Since the wake is aligned with the total flow field, the vector plot of the velocities

along the wake should show the tangency between the velocity vectors and the di-

rectional vector of the wake elements at its vertices. The velocity vectors along the

wake are shown in Fig. 6.6.
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Figure 6.6: Velocity vectors along the aligned wake for Γ∗ = 0.1 and ∆θ = 12o.
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Figure 6.7: Angle α in degrees between the velocity vector ~Vtot and the directional
vector ~dr along the aligned wake at the initial step, the converged iteration step tc

and tc − 1 for Γ∗ = 0.1 and ∆θ = 12o.

The angle α between the velocity vectors and the vortex element directional vectors,

in degrees, is shown in Fig. 6.7. For a converged wake geometry, α should be close

to 0o to satisfy the force free condition on the tip vortex wake as given in Eqn. 3.41.

Figure 6.8 shows the error ∆Xerr at the wake geometry. The L2 norm of the error

∆Xerr is shown along the iteration steps of the alignment process in Fig. 6.9. The

convergence criteria for the alignment of the tip vortex wake is set as L2(∆Xerr) ≤

1−4). It can be seen in Fig. 6.9 that the L2 norm of the error ∆Xerr has reached

the convergence criteria and the iteration process stops. At this step, the tip vortex

wake has been aligned. The proof of the alignment of the tip vortex wake with total

velocity field can also be seen in Figs. 6.6 and 6.7.
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∆θ = 12o.
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6.4 Convergence tests for helical wake

In this section, various convergence studies of the alignment process of the lifting

line tip vortex wake are presented. The conditions for the alignment process is the

same for all the results shown below. The radius of the lifting line is R∗ = 1.0. The

inflow to the lifting line is V ∗
a = 1.0, V ∗

t = π and the angular velocity of the lifting

line is ω∗ = π, corresponding to an advance coefficient, J =
Va

nD
= 1.0. The vortex

strength of the lifting line and all the components of its wake is Γ∗ = 0.1.

Figure 6.10 shows the convergence of the aligned tip vortex wake with respect to

the discretized angular coordinate, ∆θ = 12o, 6o, 3o and hence, with respect to

the number of line vortex elements N present in the transition wake. The tip vortex

geometry is initialized using 4 transition wake revolutions and 20 ultimate wake

revolutions. The contraction of the aligned tip vortex wake can be seen for ∆θ =

Y
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Figure 6.10: Convergence of aligned wake for ∆θ = 12o, 6o and 3o. The vortex
strength, Γ∗ = 0.1 and J = 1.0.
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12o, 6o and 3o. It can also be seen that the aligned tip vortex wake lie on the same

geometry.

In Fig. 6.11, the induced velocities are shown along the tip vortex wake at the

vertices of the wake elements for ∆θ = 12o.6o and 3o.
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Figure 6.11: (u, v, w)wk along the tip vortex wake for ∆θ = 12o, 6o and 3o. Γ∗ = 0.1
and J = 1.0.
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Figure 6.12: α along the tip vortex wake for ∆θ = 12o, 6o and 3o. Γ∗ = 0.1 and
J = 1.0.

The convergence of the induced velocities along the aligned wake with ∆θ can be

seen in Fig. 6.11. The angle between the total velocity vectors and the directional

vector, α at the vertices of the wake elements is shown in Fig. 6.12 for ∆θ = 12o, 6o

and 3o. It can be seen from Fig. 6.12 that α for the different discretized angular

coordinate ∆θ is close to 0o, thus showing that the velocity vectors are tangent to

the directional vectors at the wake elements and hence, the tip vortex wake is force

free.

For the same inflow, the tip vortex wake geometry is initialized with different pitch

and the aligned wake geometry for different initial pitch is compared. The tip vortex

wake geometry is initialised using half pitch, full pitch and twice the original pitch.

The initial wake geometry is shown in Fig. 6.13. The initial tip vortex geometry for

all the three cases of different pitch, P has 4 revolutions of the transition wake and

20 revolutions of the ultimate wake.
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Figure 6.13: Initial tip vortex wake geometry for 0.5P , P and 2P , where P is the
original pitch for the inflow conditions. Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.
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Figure 6.14: Aligned tip vortex wake geometry for initial pitch of 0.5P , P and 2P .
Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.
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Figure 6.15: α along the aligned tip vortex wake geometry for initial pitch of 0.5P ,
P and 2P . Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.

Figure 6.14 shows the convergence of the aligned wake geometry for each of the

initial wake geometry. This is a good test that the alignment process works. Figure

6.15 shows the angle α between the velocity vector and the directional vector at the

wake element vertices for the aligned wake, where the initial geometry of the wake

was a constant pitch helix with pitch 0.5P , P and 2P . The pitch P corresponds to

the actual inflow conditions.

From Figs. 6.14 and 6.15, it can be seen that irrespective of the initial pitch of the

wake, for a given inflow condition, the tip vortex wake always aligns to the same

final geometry. The aligned tip vortex wake geometry for the three different initial

wake geometry all lie on the same aligned geometry. The contraction of the aligned

tip vortex geometry can also be seen.
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Figure 6.16: Initial wake geometry for 2, 4 and 8 revolutions of the transition wake.
Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.

The convergence of the aligned wake is also studied with respect to the number of

transition wake revolutions. Irrespective of the number of revolutions of the transi-

tion wake, the aligned wake geometry should all be the same. The initial tip vortex

wake geometry is shown for 2, 4, and 8 revolutions of the transition wake in Fig.

6.16. The number of revolutions for the ultimate wake is fixed at 20. Figure 6.17

shows the convergence of the aligned wake geometry with respect to the number of

revolutions of the transition wake. The angle α along the aligned tip vortex wake is

shown for the different revolutions of the transition wake in Fig. 6.18 It can be seen

in Fig. 6.17 that the aligned tip vortex wake geometries for 2 and 4 revolutions of the

transition wake lie on the geometry of the aligned tip vortex wake with 8 revolutions

of the transition wake. This shows that the alignment procedure results in the same

tip vortex wake geometry irrespective of the number of revolutions of the transition

wake.
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Figure 6.17: Convergence of aligned wake geometry for 2, 4 and 8 revolutions of the
transition wake. Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.
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Figure 6.18: α along the aligned tip vortex wake for 2, 4 and 8 revolutions of the
transition wake. Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.
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Figure 6.19: Initial wake geometry for 4, 8 and 16 revolutions of the ultimate wake.
Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.

Next, the convergence of the aligned wake is studied with respect to the number

of ultimate wake revolutions. Different number of revolutions of the ultimate wake

implies different ultimate wake lengths. The number of transition revolutions is

fixed at 4 and the results are shown for 4, 8, and 16 revolutions of the ultimate wake.

The effect of the ultimate wake length on the alignment of the transition wake ge-

ometry is studied. The complete initial wake geometry is shown in Fig. 6.19 for

4, 8, and 16 revolutions of the ultimate wake. Figure 6.20 shows the convergence

of the aligned wake geometry with respect to the number of revolutions of the ulti-

mate wake. The angle α along the aligned tip vortex wake is shown for the different

revolutions of the ultimate wake in Fig. 6.21
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Figure 6.20: Convergence of aligned wake geometry for 4, 8 and 16 revolutions of
the ultimate wake. Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.
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Figure 6.21: α along the aligned tip vortex wake for 4, 8 and 16 revolutions of the
ultimate wake. Γ∗ = 0.1, J = 1.0 and ∆θ = 12o.
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Chapter 7

Lifting Line Tip Vortex/Rudder interactions

The wake alignment routine is coupled with the line vortex/hydrofoil interaction

model to simulate the interaction of propeller blade tip vortices and a rudder through

the interaction of a lifting line tip vortex and a hydrofoil. The ease of modeling the

line vortex/hydrofoil interactions as seen in Chapter 5 makes BEM a viable method

to solve the interaction of a lifting line tip vortex wake with a hydrofoil.

In this chapter, results are shown in terms of the pressure distribution on the hydro-

foil due to the lifting line tip vortex wake and convergence studies in terms of the

lifting line wake discretization are presented.

7.1 Lifting Line tip vortex/hydrofoil interactions

The lifting line tip vortex system with the hydrofoil is shown in Fig. 7.1

The lifting line tip vortex wake is aligned with the total flow, ~Vtot, which includes

the inflow velocity, ~Vin, the velocity induced by the lifting line system, ~Vwk and the

velocity induced by the foil and its wake ~Vrud. At each iteration step of the alignment

process, first the effect of the tip vortex wake is evaluated on the hydrofoil and then
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Figure 7.1: The lifting line tip vortex/hydrofoil interaction model.

the total field velocity is obtained for the alignment process.

The parameters for the lifting line tip vortex/hydrofoil interaction model are shown

below. All the distance variables are non dimensionalized using the hydrofoil span,

D = 1.0 m and all the velocities are non dimensionalized using the axial inflow

velocity, Va = 1.0 m/s. The vortex strength is non dimensionalized as Γ∗ =
Γ

VaR
,

where R is the radius of the lifting line, R = 0.5 m. The lifting line and the tip vortex

wake system has the vortex strength, Γ∗ = 0.1. The wake system has 3 revolutions

of the transition wake and 3 revolutions of the ultimate wake. The results shown in

Fig. 7.2 are for the tip vortex discretization of ∆θ = 3o. The hydrofoil is a NACA66
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foil section with D∗ = 1.0, C∗ = C/D = 0.4 and maximum thickness of the foil

section, t∗o = to/D = 0.12. The hydrofoil is discretized using 40 panels in the

chordwise direction and 20 panels in the spanwise direction.

In Fig. 7.2, the results are shown in terms of the pressure distribution on the hydro-

foil and the velocity vectors on the aligned tip vortex wake geometry.

The vectors in Fig. 7.2 indicate that the velocity vectors are tangential to the direc-

tional vectors of the tip vortex wake, thus indicating that the wake is aligned to the

total flow field. As seen earlier in the results of the lifting line/hydrofoil interactions,

the tip vortex wake induces a low pressure on the foil in the vicinity of the tip vortex.
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Figure 7.2: Contours of −CP on the foil for the lifting line location of (a)δk =
0o, (b)δk = 90o, (c)δk = 180o and (d)δk = 270o.

When the effect of the tip vortex wake is evaluated on the hydrofoil, the portion of

the tip vortex which passes through the hydrofoil is also included. However, for a

real case, this portion inside the hydrofoil has to be neglected when the problem of

the hydrofoil is solved.
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Figure 7.3 shows the angle α in degrees along the tip vortex wake at the end of the

alignment process.
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Figure 7.3: αo along the aligned tip vortex wake.

From the Fig. 7.3, we can see that the angle between the total velocity vector and

the direction vector on the tip vortex wake is small. This comfirms to the alignment

of the tip vortex wake with the total velocity field. However, the spikes seen in Fig.

7.3 correspond to the location of the tip vortex when it is close to the foil. At those

locations, the velocity induced by the foil is strong and this results in the large values

of α compared to the rest of the tip vortex wake.

As the lifting line rotates, the minimum pressure coefficient at each location of the

lifting line, on the hydrofoil is shown in Fig. 7.4
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Figure 7.4: -CP min on the foil surface at different lifting line angles.
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Figure 7.5: -CP min along lifting line angle for ∆θ = 12o, 6o, and 3o.

Through Fig. 7.4, we get an idea as to the possible location of the lifting line for the

inception of cavitation on the hydrofoil. This measure can also be used to study the

effect of the tip vortex wake discretization on CP min. Figure 7.5 shows the CP min

along the lifting line angle for ∆θ = 12o, 6o, 3o. The oscillations seen in the values

of CP min along the lifting line angle could be due to the facet that when the problem

for the hydrofoil is solved, the portion of the tip vortex wake inside the hydrofoil is

also included. By neglecting this part, the oscillations may vanish.
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The convergence of the aligned wake with the total flow field is shown in Fig. 7.6.

This total velocity includes the inflow velocity, the lifting line tip vortex wake in-

duced velocity and the velocity induced by the hydrofoil and its wake.
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Figure 7.6: Convergence of the aligned tip vortex wake at (a)δk = 0o and (b)δk =
180o for ∆θ = 12o, 6o, and 3o.
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Chapter 8

Conclusions

8.1 Conclusions

Having a complete understanding of the dynamics of the flow around a rudder will

help us to create accurate numerical models for rudder design and prediction of

cavitation on a rudder. Of special interest is the interaction of the propeller blade tip

vortices with the rudder. These cavitating vortices induce low pressure distribution

on the rudder and could also give rise to acoustic noise and vibrations of the rudder

and the hull. This work aims to understand the phenomenon of propeller blade tip

vortex/rudder interaction and predict the pressure distribution on the rudder surface

due to the tip vortices.

The vortex/hydrofoil interactions were initially modelled using a commercial CFD

solver, FLUENT. The dynamics of a 2D vortex in a uniform flow were studied ini-

tially to understand the importance of the various modeling parameters such as grid

size and the order of the time stepping scheme, etc. The 2D vortex in a uniform flow

was found to be too dissipative in nature. Studies were done in order to control the

dissipation of the vorticity over time. This was done because the numerical schemes

in the CFD based solver FLUENT, has an inherent numerical dissipation and this

makes it difficult to model problems of vortex flows. In 3D vortex/hydrofoil interac-
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tions the dissipation of the vorticity is even more and by the time the vortex travels

over the chord of the hydrofoil it has dissipated to a large extent. However as shown

in Figs. 1.1 and 1.2, the tip vortices that travel over the rudder are tightly bound

and do not dissipate much for the length of the rudder chord. Also, for a complete

model of the propeller tip vortex rudder interaction, the entire domain, in which the

propeller and the rudder is present, needs to be meshed. The size of the domain

and the mesh size increases the computational time as well. Thus, CFD modeling in

FLUENT makes it difficult to model the tip vortex rudder interaction and accurately

capture the tip vortices and their effect on the pressure distribution on the rudder

surface.

In BEM modeling, only the boundary of the domain need to be meshed. This makes

it an attractive option to model complex flow problems, such as the tip vortex rudder

interaction problem. A BEM based flow solver, PROPCAV for wetted hydrofoils is

used to model this problem.

Initially, a line vortex/hydrofoil interation model is implemented. The presence of

the line vortex affects the inflow to the hydrofoil. Hence, by modifying the strength

of the sources distributed on the hydrofoil panels, in terms of the new inflow, the

effect of the line vortices on the hdyrofoil is evaluated. The presence of a line vortex

induces low pressures on the hydrofoil due to the strong inflow that it generates, and

this is a concern for the inception of cavitation on the hydrofoil.

Next, a lifting line model for propeller flows is used to model the propeller blade

tip vortices. A numerical model is developed to align the lifting line tip vortex with

the total flow field in order to maintain the force free condition on the tip vortex

wake. The lifting line tip vortex is discretized into line vortex elements and the total
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velocity on the tip vortex wake is evaluated. Each point on the tip vortex wake is

aligned with the total flow field by first rotating it about the original slipstream of

the wake and then modifying the wake to account for the wake induced velocities.

The contraction of the slipstream can be seen in the aligned tip vortex wake. Also,

the tangency of the total velocity vectors and the directional vectors of the wake, and

the angle between these vectors show that the wake is aligned to the total flow field.

Various studies and tests verify the convergence process.

Finally, line vortex/hdyrofoil interaction model and the wake alignment routine are

coupled to evaluate the effect of the aligned tip vortex wake on the rudder. At each

alignment iteration stepm, the problem for the flow around hydrofoil is solved with

the altered inflow velocity and the total velocity field which also includes the induced

velocity of the hydrofoil and its wake is evaluated. Then the wake geometry is

changed to account for this total flow field. This process is repeated until the tip

vortex wake aligns to the total flow field. The pressure distributions on the hydrofoil

confirm the fact that the tip vortices induce low pressures on the rudder surface. A

distribution of the CP min with the lifting line angle gives an insight to the possible

cavitation inception.

8.2 Recommendations for Future Work

Further study is required before the propeller blade tip vortex wake/rudder interac-

tions model can predict accurate results for the flow around the rudder. Improve-

ments are also needed on the model to reduce computational time. The following

can be done to improve the interaction model:
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• It is anticipated that a vortex model with a cavity core should be able to convect

the vortex without significant dissipation and thus predict the hydrofoil vortex

interactions more accurately. The two-phase FLUENT option should be uti-

lized in this case. Then the results from the cavity core model from FLUENT

can be compared with our model for the line vortex/hydrofoil interactions.

• The wake alignment technique needs to be studied further to make it more

efficient and accurate. Also, the alignment technique does not seem to work

for higher values of the vortex strength Γ. This needs to be investigated and

corrected.

• The present model has to be extended for the case of a rudder subject to the

slipstream of a Z bladed propeller. As a first step, this must be done in the

case of Z lifting lines.

• The tip vortex/rudder interaction model needs to be implemented for the case

with cavitation on the rudder surface. This requires some additional changes

in the hydrofoil version of PROPCAV. Then the unsteady cavitation results

can be compared with the cavitation results for the case of circumferentially

averaged propeller flow/rudder interactions and the difference between the av-

eraged and the unsteady results can be compared to check the validity of the

models.

• Vortex trajectories, pressure distributions and cavity planforms from the cur-

rent model should be compared with the measured quantities in experiments

like those of Kracht [1989a] and Kracht [1989b].
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