(c) S. A. Kinuas, 2007

Physical meaning of vortex stretching
term in the vorticity equation
Vorticity equ:

$$
\begin{equation*}
\frac{D \vec{\omega}}{D t}=\underbrace{(\vec{\omega} \cdot \vec{\nabla}) \vec{q}}_{(A)}+\underbrace{v \nabla^{2} \vec{\omega}}_{B} \tag{1}
\end{equation*}
$$

According to equ. (1) the vorticity, $\vec{\omega}$, of fluid particles changes, as they move with the flow (that is what $\frac{D}{D t}$ is!), and that change with has two components: parts (A) and (B). (B) corresponds to viscous diffusion and (A) to vortex stretching. In order to see the physical meaning of term (A) we will apply $\frac{D \vec{\omega}}{D t}=(\vec{\omega} \cdot \vec{\nabla}) \vec{q}$ in a particular case:

Vortex element $A B^{(a t=0)}$ moves to $A^{\prime} B^{\prime}($ at $t=\Delta t)$ \rightarrow defined as a thin tube inside which $\vec{w}_{1}=$ const (Note $\vec{\omega}=0$ outside $A B$)

First of all conservation of mass would require: $\Delta l_{1} \cdot \Delta A_{1}=\Delta l_{2} \cdot \Delta A_{2}$ (2)
($\Delta A_{1}, \Delta A_{2}$ are cross sectional areas)
We will first see how the $\vec{\omega} \cdot \vec{\nabla}$ operator becomes in this case:

$$
\overrightarrow{w_{1}} \vec{\nabla}=\left\{\begin{array}{l}
\omega_{1 x} \frac{\partial}{\partial x}+\omega_{1 y} \frac{\partial}{\partial y}+\omega_{1 z} \frac{\partial}{\partial z} \\
\rightarrow=\left|\overrightarrow{w_{1}}\right|=\omega_{1}
\end{array}\right.
$$

Thus $\vec{\omega}_{1} \vec{\nabla} \equiv \omega_{1} \frac{\partial}{\partial x}$
Then: $(\vec{w} \cdot \vec{\nabla}) \vec{q}=\omega_{1} \frac{\partial u}{\partial x} \vec{\imath}+\omega_{1} \frac{\partial v}{\partial x} \vec{\jmath}+\omega_{1} \frac{\partial w}{\partial x} \vec{k}$
(where $\vec{q}=u \vec{\imath}+v \vec{\jmath}+w \vec{k}$, velocity vector)
We will then consider only the (x) component of eq.(3), and we will equate it to the x component of the LHS of equ. (1) $\left.\begin{array}{l}\text { remember we do } \\ \text { not consider the } \text { term here! }\end{array}\right]$

$$
\begin{equation*}
\frac{D w_{1 x}}{D t}=w_{1} \frac{\partial u}{\partial x} \tag{4}
\end{equation*}
$$

We will now express the 2 sides of eq. (4) in terms of discrete differences (which should be "exact" as $\Delta t \rightarrow 0$)

$$
\begin{align*}
& \frac{\Delta w_{1 x}}{\Delta t} \approx \frac{w_{2}-w_{1}}{\Delta t}(5)\left(w_{2}=\left|\vec{w}_{2}\right|\right) \\
& \frac{\partial u}{\partial x} \approx \frac{u_{B}-u_{A}}{\Delta e_{1}} \\
& \text { But: }\left(u_{B}-u_{A}\right) \Delta t=\Delta l_{2}-\Delta e_{1} \\
& \text { Thus } \frac{\partial u}{\partial x} \approx \frac{\Delta e_{2}-\Delta e_{1}}{\Delta t \cdot \Delta e_{1}}
\end{align*}
$$

Replacing (5) \& (6) into (4) we get:

$$
\begin{align*}
\frac{\omega_{2}-w_{1}}{\Delta t} & =\omega_{1} \frac{\Delta e_{2}-\Delta e_{1}}{\Delta t \cdot \Delta e_{1}} \leadsto \\
\leadsto w_{2}-w_{1} & =w_{1}\left(\frac{\Delta e_{2}}{\Delta e_{1}}-1\right) \leadsto \frac{w_{2}}{\omega_{1}}=\frac{\Delta l_{2}}{\Delta l_{1}} \tag{7}
\end{align*}
$$

Eq. (7) states that as the vortex element stretches its vorticity (which is directly related to the spin of the particles) increases By using (2) eq. (7) can also be written as: $\omega_{2} \Delta A_{2}=\omega_{1} \Delta A_{1}$ (8)

As we explained in class eq. (7) or eq. (8) make physical sense since a stretched vortex gets "tighter" (i.e. ΔA decreases), and for angular momentum to be conserved (remember classic demo where a spinning person rotates faster as they move their arms towards their body), w must increase.
In the case of a vortex element we often define: $\vec{\Gamma}=\vec{w} \Delta A$; where \vec{r} is now called a discrete vortex and $\Gamma=\omega \Delta A$ is the vortex strength
So according to $(8): \Gamma_{2}=\Gamma_{1}$ or the vortex strength is conserved (again in the absence of term (B) in (1)) \Rightarrow see next 2 pages for nice photos of vortioes

87. Attached vortex pair behind an inclined slender body. A long ogive-cylinder is inclined at 30° to water flowing at $4 \mathrm{~cm} / \mathrm{s}$. At this angle of attack a symmetric pair of vortices forms on the lee side of the body. Colored fluid
emitted under slight pressure from $0.3-\mathrm{mm}$ holes spirals around the core of the nearer vortex. The Reynolds number is 400 based on the diameter of 1 cm . Fiechter 1969

Rudder half in race of a propeller Starboard view, rudder 12.5° to port

Fig. 7

