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APPENDIX 2

Expressions for some common vector differential quantities in
orthogonal curvilinear co-ordinate systems

£y £, &5 is a system of orthogonal curvilinear co-ordinates, and the unit

vectors a, b, e are parallel to the co-ordinate lines and in the directions of

increase of £, £y, £ respectively, The change in the position vector % corre-
gponding to increments in £, £, and £, can then be written as
8% = hy 8E, a+ hy 85y b + hy 8y c.

a, b, cand the positive scale factors h,, ky, &, are functions of the co-ordinates.
The fact that the three families of eo-ordinate lines form an orthogonal
system provides useful expressions for the derivatives of a, b, and ¢. We have
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with two other similar relations, and since
& féx ox & féx\ fx a'x & féx
A (3& "oy ( O, (3;.)
= ox
8y 05, 05,
#x ik, b) d(h, a)
e TR TR
15 a vector normal to e, It follows that
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with four other similar relations. Then
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with two other similar relations.
The vector gradient of a scalar function V is
a & l:- E'
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The gradient in a direction n is obtained from the operator n. V, which may
act on either a scalar or a vector. To find the components of n. VF, where
F=FatFb+Fe,

we see that
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grad ¥, or VI, = ( V.
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we must allow for the dependence of both K, F,, F; and the unit vectors
a, b, ¢ on position. It follows from the above relations that
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where ny, ty, #y are the components of n in the dircctions a, b, ¢.
The divergence and curl operators act only on a vector, and
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By making use of the expressions for dcnvatnrus of a, b and ¢, we find

V.F =L _[MukB) #hhE) -’fiFa}],
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this can also be regarded as the result of applying the “divergence theorem’

to the small parallelepiped whose edges are displacements along co-ordinate

lines corresponding to the increments agi, 8y, 85y Likewise we find

divF, or V.F,

culF, or VxF,

a (0haF) dhF) k)R
vr -5 } iy B,

a{k R)_ALE),

i e

ha kb he
Bt T
hihohy| 0, 0 8 |
B b Fy b Fy
which can. also be regarded as following from the application of Stokes's
theorem in turn to three orthogonal faces of the same parallelepiped.
The divergence of the gradient gives the Laplacian operator, which may
act on either a scalar or a vector,
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The components of VIF may be calculated by replacing ¥ in this formula by
F, = F,a+F,b+ F, e, and using the expressions for derivatives of a, band e,
but the result is too complicated to be useful. It is usually more convenient,

V.VF, or V¥,
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when finding the components of V'F in a particular co-ordinate system, to
use the identity VIF = V(V.F)-Vx(VxF)

and the above expressions for grad, div and curl,

Consider now the components of the rate-of-strain tensor expressed in
terms of velocity components and derivatives relative to the curvilinear
system. The gradient, in the direction n, of the component of velocity uin
the fixed direction m is

0.V(im.u), =m.(n.Vu).
Diagonal elements of the rate-of-strain tensor represent rates of extension,
obtained by putting m = n, and the non-diagonal elements involve velocity
gradients for which m and n are orthogonal, We see then, from the above
formula for n. VF, that the components of the rate-of-strain tensor relative
to Cartesian axes locally parallel to a, b and ¢ (to which the suffixes 1, 2, 3

refer, respectively) are
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with four other expressions obtained by cyc]m interchange of suffixes. The
components of the stress tensor o can be obtained from those of rate of
strain, using the relation (for an incompressible fluid)
Ty = —p By +2pey
The components of all terms in the equation of motion of a fluid in the
directions a, b, ¢ may now be found by simple substitution in the appro-
priate expressions above, The components of the term u. Vu in the accelera-

tion are obtained from the expression for n.VF,
Applications to some particular co-ordinate systemns are as follows.

Spherical polar co-ordinates

To the co-ordinates £, = r, £, = 8, £, = ¢ (where ¢ is the azimuthal angle
about the axis # = o) there correspond the scale factors +

hy=1, hymr, hym=rsind 7
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Rate-of-strain tensor:
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Equation of motion for an incompressible fluid, with no body force:
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Cylindrical co-ordingles, of the x-co-ordinate line, but are written out here in view of the frequency of
To the co-ordinates £, = %, & = o, £ = ¢ (where ¢ is the azimuthal their use, The co-ordinates are
angle about the axis o = o) there correspond the scale factors Bt Eud mi o hian Aan
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Polar co-ordinates in two dimensions
The relevant formulae can be obtained from those for the above cylindrical
co-ordinates by suppressing all components and derivatives in the direction
: 19-2
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